

Beam Commissioning of SuperKEKB rings at Phase-1

M. Tobiyama, M. Arinaga, J. Flanagan, H. Fukuma,
H. Ikeda, H. Ishii, K. Mori, E. Mulyani, M. Tejima
KEK Accelerator Laboratory and SOKENDAI
G. Varner, U. Hawaii
G. Bonvicini, Wayne State U.

SuperKEKB accelerators

- Circumference 3km
- LER:e⁺ 4GeV 3.6A
- HER:e⁻ 7GeV 2.6A
- f_{RF}=508.886MHz
- h=5120
 - Low emittance 3.2/4.6nm with ~0.28% xy-coupling
- Bunch length 6/5 mm @1mA/bunch
- β* at IP H/V
 32/0.27mm
 25/0.3mm
- Luminosity 80x10³⁵
 - x40 of KEKB

Commissioning stages

Phase-1 (Feb 2016-Jun 2016)

- Without Belle-II detector (with Beast test detector)
- Without superconducting final quads
- Without collision
- Without positron damping ring
- Phase 2 (Oct 2017 Jul 2018)
 - With Belle-II detector and superconducting final quads.
 - Without innermost detector (Pixel, SVD)
 - With positron damping ring
 - Target luminosity : 1x10³⁴

Phase 3 (Jan 2019---)

- Full set Belle2 detector
- Physics run with target luminosity of 8x10³⁵

Target of Phase-1 operation

- Startup of each hardware system
- Establish beam operation software tools
- Preparation for installation of Belle-II detector
 - Enough vacuum scrubbing (ex. 360-720 Ah)
- High beam current operation
 - Find and solve difficulties associated with high beam current operation
- Optics tuning without IR (nor detector solenoid)
 - Low emittance, low x-y coupling tunig
- Various machine developments

History of Phase 1 operation

LER_Guideline_2016062623_1

Beam instrumentations

System	Quantity		
	HER	LER	DR
Beam position monitor (BPM)	466	444	83
Gated turn-by-turn monitor (GTBT)	58	59	0
Transverse bunch feedback system	2	2	1
Longitudinal bunch feedback system	0(1)	1	0
Visible SR size monitor	1	1	1
X-ray size monitor	1	1	0
Beamstrahlung monitor	1	1	0
Betatron tune monitor	2	2	1
Beam loss monitor	200		34
DCCT	1	1	1
СТ	1	1	0
Bunch current monitor	1	1	1

Injection Tuning

- Gated Turn-by-turn monitor : Timing adjustment is needed before use!
 - 50/450 BPM, even placement : NO GTBT around important point such as beam collimeters, injection section...
 - Needed to bring oscilloscope and observe BPM single directory.

Gated turn-by-turn monitor

508.886MHz & FID

1421B Gated turn-by-turn monitor

SuperKEKB Beam Instrmentation

117 units have been distributed around 20 local control rooms

Commissioning of GTBT

- Roughly adjusted ADC timing using injection beam
 - Contributed injection/storage tuning
- Fine timing adjustments
 - Single bunched beam
 - Using pilot(non-FB) bunch
- Rough and fine timing adjustment of fast gates using pilot bunch during scrubbing run.

Orbit vibration (1.3s=131k turns)

Accelerator study

Head-tail damping- transverse decoherence

 Detailed analysis will be done by N. Kuroo.

Main BPM system (narrowband)

- HER : 1GHz (old) detector used at KEKB.
- LER : 509MHz new detectors.
 - All VXI main frames were replaced with new ones.
- Rotation angle of BPM was measured prior to operation for position-correction.
- Gain calibration, beam based alignment and in situ survey of bad BPM have been applied. Instead of BPM mapping at bench.
- Movements of BPM blocks relative to adjacent sextupoles are monitored by displacement sensors to correct the beam positions.
- Data acquisition software of KEKB is modified to fit the new arrangement of the detectors.

Button heads, BPM blocks

Cabling check

Cabling check

- Cabling was checked by beam because final cabling check was not done to reduce the cost.
- Wrong cable connections were found at 25 BPMs, then corrected.
- One damaged FT (SMA connector)

Gain Mapping

- Dispersion of LER-gain shows a little bit worse than that of HER
 - Flange-type connection(LER) vs. Brazing (HER)
- Drift of gain with time
 - HER BPM seems drift much larger than LER
 - Old N-type connector, old cables

- RMS values of offset
 - LER: 0.570 mm (x) 0.222 mm (y)
 - HER: 0.505 mm (x) 0.392 mm (y)

Obtained performance

Position resolution

- Position resolution was estimated by beam by so called "three-BPM method" which measures correlation of the orbit among three BPMs.
- The result represents upper bound of the resolution because the measurement can be affected by beam movement between switching interval of a multiplexer.
- The obtained resolution is better than $3\mu m$ and $5\mu m$ in LER and HER, respectively, for most of BPMs.

Noise in 1GHz (KEKB) detectors

- Larger noise level was found in the 1GHz detectors in a site building D7 where RF equipment's are located.
 - BPM resolution at Oho and Nikko straight sections is affected probably by the same cause.
 - Small noise level in the 509MHz detectors is assumed to be due to their better shielding of analogue circuits.
 - Noise source is not identified yet.
 - A measure is to replace the 1GHz detectors with the 509MHz detectors.

Loss Monitor

- We use beam loss monitors for protection of the hardware against unexpected sudden beam losses. The loss monitor system provides an trigger to the beam abort system.
- The sensors are ion chambers (32) and PIN photo-diodes (114).
- We optimize the threshold of the abort trigger and the PIN position by checking the beam information at each abort event.
- H. Ikeda will report the details on 13th morning talk "Beam Loss and Abort Diagnostics during SuperKEKB Phase-1" (TUAL03)

SuperKEKB Transverse FB systems

SuperKEKB Transverse FB systems

Collaborating SLAC(US-Japan) and INFN-LNF(KEK-LNF)

SuperKEKB Longitudinal FB system

SuperKEKB Longitudinal Bunch Feedback System

iGp12 digital feedback filter

- Successor of iGp digital filters developed under US-Japan collaboration with SLAC.
 - 12bit ADC/DAC
 - 10 20 tap FIR filter
 - 12MB memory to analyze instabilities
- 10 iGp12s are used
 - 8 with larger FPGA (VSX95T)
 - 2 with normal FPGA (VSX50T)
- Single bunch excitation using PLL

Commissioning

- Strong transverse coupled-bunch instability has been observed in both rings even with fairly low stored current at very early stage of the commissioning.
 - LER : Both H and V instability, V was much stronger and limited the stored current in the beginning.
 - HER : Both H and V. Both instability limited the stored current less than 0.5mA (total current with multi-bunch mode) in the beginning.
- BxB feedback systems have been contributing to the ring commissioning
 - Vacuum scrubbing
 - Coupled-bunch instability study(EC, Fast Ion)

Example of G-D experiment(HER-H)

LER longitudinal FB

- Longitudinal instability starting with beam current >660mA with by 3 mode.
- Wide modes around 2500?

Performance of BxB feedback

- Successfully suppressed coupled bunch instability up to maximum beam current (1A in LER, .87A in HER) with minimum bunch space of 4 ns.
- Transverse feedback damping time around maximum beam current was about 0.5 ms (50 turns).
- Encountered unexpected LER longitudinal CBI, but successfully suppressed up to 1A.
 - Instability growth ~15 ms, FB damping ~13 ms.

Difficulty in FB systems

Saturation of FB bunch position detectors

- LNA just after comb filter saturates with bunch current >0.5mA
- Couldn't stop abnormal single bunch injection >5mA/bunch
- Changed power-balance in FB detector
- Burn-out of the water-cooled dummy loads for LER longitudinal FB systems due to stop of water chiller.
 - Status of the chiller and temperature around LFB system have been monitored but no automatic interlock was implemented.
- High power attenuators (1.5kW) had failed during operation.
 - Doubted frailer in transverse kicker but was not..
 - Mean power ~200W. Suspecting initial failure.

Photon monitor

XRM: X-ray beam size monitor

- Pinhole, Coded Aperture mask, etc.
 - σy (σx)
 - Details will be presented by E. Muliyani's poster (TUPG72)

SRM: (Visual) Synchrotron Radiation monitor

Visible light monitor. Interferometer, streak, gated camera, etc.
 σz, σx (σy)

LABM : Large Angle Beamstrahlung Monitor (IR)

- SR-like radiation from interaction point due to crossing of the colliding beams.
- Can measure size ratios and relative offsets at collision point.
- Phase 1 : No collision so only testing the beam background.

XRM: Hardware

X-ray beam line under construction at LER

Masks: ~20 μm Au on 600 μm CVD diamond substrate

Water-cooled mask holder

US-Japan Collaboration (U. Hawaii, SLAC, Cornell U.)

High-speed readout electronics for the X-ray monitor, being developed by U of Hawaii.

Deep Si pixel detector and spectrometer chips for the X-ray monitor, being developed at SLAC.

LER XRM: e-cloud vertical blowup study

Very good fill-to-fill repeatability

Very good agreement between different mask, especially below 150um.

Low emittance, low x-y coupling tuning

Bunch length measurement

Measured by a Streak camera

 The behaviors are similar as KEKB for both of LER and HER. Bunch Lengthening is stronger than that of simulation (Larger impedance).

Difficulties

- Huge difference between the measured HER vertical beam size via XRM and the estimated beam size from optics correction.
 - Much lower βy at source point than at LER.
 - Beam tilt or motion at source point?
 - Unexpectedly large smearing in the beam line?
 - Systematics under study-> For details, see TUPG72.

SR beam size monitors did not work well in both rings.

- Large deviation between the measured magnification factor and the design (>2).
 - Misalignment of extraction mirror?
 - Will be checked in early October.

Summary

- Most of the beam instrumentation prepared for SuperKEKB rings (phase 1) are working well.
 - COD measurement system
 - Narrowband position monitors
 - Gated turn-by-turn monitors
 - Beam current/ bunch current monitor
 - Loss monitor
 - Bunch by bunch feedback systems
 - Tune monitors
 - Transverse FB (HER and LER)
 - Longitudinal FB (LER)
 - Photon monitor (transverse size, longitudinal size)