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Abstract: It is of vital importance to provide a continuous and comprehensive overview of the functionality of beam loss monitoring (BLM) systems, with particular emphasis on the connectivity and correct operation of the
detectors. At CERN, a new BLM system for the pre-accelerators of the LHC is currently at an advanced stage of development. This contribution reports on a new method which aims to automatically and continuously ensure the
proper connection and performance of the detectors used in the new BLM system.

Motivation The suggested solution
e Beam loss monitoring (BLM) very important in machine pro- e LHC experience: modulation of HV — response in output current
tection and optimization at CERN |
. . . . DC | > Ionization chamber > e Injectors:
e Continuous functional supervision of BLM system essential

— Continuous but pulsed operation — same scheme not usable

e This feature doesn’t exist in any accelerator to our knowledge

— Usable frequency range far exceeds that at the LHC

/\N\/WW\, Detection — Swept frequency (chirp) excitation possible — unique signature
— Seamless enabling/disabling of modulation possible

New BLM system in development for the LHC Injectors
— Awm: development of a process ensuring an uninterrupted su-
pervision of the entire BLM signal chain

Fig. 1: Schematic view of the signal chain used for the modulation. y y . . _
— "Gated” modulation: operational measurement and modulation separate

Gated modulation

Detecting the modulation
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ﬁ:) | B ‘ | B | ‘ | Fig. 3: Response to a 0 — 20 Hz chirp excitation at the PSB. Fig. 4: Cross-correlation waveform at the PSB with a linear chirp from 0 Hz to 20 Hz.
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Time [s] e Cross-correlation on FPGA: time domain, fixed arithmetic — resource-efficient

Fio. 2 Response to a 0 — 50 Hz chirp excitation in the lab, e Need to eliminate beam loss contributions like the clipped peak on Fig. 3 — windowing and average suppression applied to signal

e Maximal cross-correlation value ( on Fig. 4) registered in each basic period, amplitude and time of detection compared to acceptance limits

Cross-correlation at the PSB

Series of acquisitions from all 40 channels currently available at the PSB
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e Acceptance limits

— Mean value, standard deviation - Lower and higher acceptance limits - Minima, maxima in sample

Fig. 5: Cross-correlation peak amplitude and detection time statistics and acceptance limits per channel at the PSB. - Unlque pet detector

— Tuned further based on subsequent acquisitions

Failure cases covered
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Tests in the lab and at LINAC4: all possible cable disconnection scenarios covered
e Disconnection of the HV or signal cable, at the electronics or at the detector @ 5 V1 i
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e LHC implementation: filter capacitor variation — modulation phase variation E:; P =
o
— Faulty soldering, capacitor degradation due to radiation < —ol | )
e Injectors: different frequency range, different behavior expected (see Fig. 6) 10 LHC Injectors 100 LHC nffesiion:
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— Filter capacitor variation — amplitude variation, no change in phase behavior 0.01 0.1 1 10 100 1,000 0.0 0.1 1 10 100 1,000
— Simulation results confirmed by measurements Frequency [Hz| Frequency [Hz|
— High amplitude variation (see Fig. 5) — wide acceptance window — reduced
sensitivity to filter capacitor deterioration —(C =940nF —C =470nF, nominal —C =235nF —C=47nF —C =0

Fig. 6: Simulated Bode plot of the input current digitized by the front-end card for different filter capacitor values.
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