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Abstract

At Diamond Light source, the main assumption for the

Fast Orbit Feedback (FOFB) controller design is that the

corrector magnets all have the same dynamic response. In

this paper, a procedure to measure the frequency responses

of the corrector magnets on the Diamond Storage Ring is

presented and the magnet responses are measured and com-

pared in order to assess whether this assumption is valid.

The measurements are made by exciting a single corrector

magnet with a sinusoidal input and measuring the resulting

sinusoidal movement on the electron beam using electron

Beam Position Monitors (eBPMs). The input excitation is

varied from 10 Hz to 5 kHz using a 10 mA sine wave. The

amplitude ratio and the phase difference between the input

excitation and the beam position excitation are determined

for each input frequency and the procedure is repeated for

several magnets. Variations in both gain and phase across

magnets are discussed in this paper and the effect of such

variations on the performance of the FOFB controller per-

formance is determined.

INTRODUCTION

The Fast Orbit Feedback (FOFB) Controller at Diamond

performs global orbit correction to 172 horizontal and ver-

tical correctors respectively using the position from 171

horizontal and 171 vertical electron Beam Position Moni-

tors (eBPMs). The main assumption of the FOFB design

is that all corrector magnets in the Storage Ring have the

same dynamic effect on beam position. This assumption

allows the FOFB controller to be decoupled into a static part

(implemented as the inverse of the Response Matrix) and

a dynamic part (implemented as IIR filters on the outputs

of the inverse Response Matrix). If the dynamics of the

corrector magnets are dissimilar, then the decoupled control

approach may no longer be valid and significant differences

in dynamics may limit the ability of the FOFB controller to

attenuate disturbances.

Two straights in the Diamond Storage Ring (I13 and I09)

were modified with vertical mini-beta and horizontally focus-

ing optics [1], resulting in the need for two extra correctors

in each modified straight in both planes. The additional

correctors are different in design to the standard correctors

used around the rest of the Storage Ring. Moreover the mini-

beta correctors are fitted around a different vacuum chamber

cross section. A method to measure the dynamic response

of the Storage Ring correctors was developed so that the

dynamics of the mini-beta correctors can be compared to

the standard corrector magnets and the impact on the FOFB

performance can be determined. The procedure to obtain
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Figure 1: System representation.

the required measurements for such characterisation and the

analysis of the measurements are presented in this paper.

FREQUENCY RESPONSE OF A SYSTEM

A general representation of the system to be characterised

is shown in Fig. 1 where the system to be characterised

is represented by G (referred to as the open loop system)

which includes dynamics contributed by the magnet power

supplies, the magnet itself and the vacuum vessel. Also

included in G are external disturbances acting on the electron

beam. The FOFB controller is represented by C, which takes

the difference of the beam position at all eBPMs, y(t) and

the golden orbit, r (t) as an input. An external excitation,

u(t) can be added to the calculated output v(t), which then

becomes the correction applied to the corrector magnets.

A common way of modelling the system G, is to find the

frequency response, or response to a sinusoid. An input

signal u(t) that is a harmonic signal with angular frequency

ω, can be expressed as

u(t) = u0 sin(ωt) (1)

If the system is properly damped, then after some time the

transient behaviour of the system will damp and the output

y(t) is also harmonic with the same frequency and its am-

plitude and phase with respect u(t) are determined by the

complex value of G( jω) i.e. the complex number that is

obtained when s = jω is substituted in the expression of the

transfer function G(s) [2]. Specifically, the gain |G( jω) |

equals the ratio of the amplitudes of the output and input

signals and the phase angle ∠G( jω) is equal to the phase

shift. The gain and phase shift are shown as functions of the

angular frequency in a Bode plot. The information in such a

plot is used as a model of the linear, time-invariant system

G(s) and can be used to compute the output of the system

for a given input.

To measure the frequency response, the system is excited

at a user defined set of M excitation frequencies {ωi }i=1, ...,M

and associated amplitudes {u0i }i=1, ...,M . When the system

is excited, information is only obtained at the chosen excita-

tion frequencies, so that the frequency grid should normally
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be chosen where required dynamic behaviour is expected.

Additionally, the variance of the estimated model decreases

with increasing number of excitation frequencies. The am-

plitude of the excitation is set to obtain optimal signal to

noise performance. However, the amplitude should be cho-

sen such that any amplitude or rate limiters in the system

are not activated, as such nonlinearities would affect the

measured response.

To characterise the open loop response, the FOFB con-

troller is turned off (i.e. v(t) = 0 in Fig. 1) and the excitation

signal, u(t) is turned on, so that the output signal is a direct

measurement of the system dynamics which can be written

in terms of transfer functions described by s i.e.

Y (s) = G(s)U (s) (2)

By substituting s = jω, the magnitude of the system G( jω)

is expressed as the ratio of the amplitudes of the excitation

and the output signals and the phase of the system G( jω) is

expressed as the difference between the phases of the output

signal and the excitation signal i.e.

|G( jω) | =
|Y ( jω) |

|U ( jω) |

∠G( jω) = ∠Y ( jω) − ∠U ( jω)

(3)

When the FOFB controller is switched on and the excitation

is active, the output signal, y(t) includes the effect of the

FOFB controller dynamics as well as the system dynamics

and is given by

Y (s) = G(s)(U (s) + V (s))

Y (s) =
G(s)

1 + G(s)C(s)
(4)

The sensitivity function [2] is defined as transfer function

between the disturbances acting on the beam and the beam

position which is described by

S(s) =
1

1 + G(s)C(s)
(5)

The magnitude of the sensitivity function at a particular

frequency indicates the level of attenuation the closed loop

achieves. From (2) and (4), by dividing the measured fre-

quency response when the FOFB controller is on by the

response with the FOFB turned off, the sensitivity function

can be determined.

MEASUREMENT PROCEDURE

The FOFB system calculates the orbit correction on dis-

tributed VxWorks PowerPC processors at s sample rate

f s = 10072 Hz. The processors can be programmed via

EPICS to provide individual excitation signals for each cor-

rector which is added to the calculated output from the FOFB

controller, or DC set-point when open loop. Almost arbi-

trary excitation frequencies are possible as the controller

advances the sine wave excitation by a programmed phase

advance each tick. The resulting orbit data is collected by

the eBPMs and is also archived at f s [4], which is later read

back to provide data for the analysis.

The algorithm for measurement of the frequency response

of a corrector is described in the following steps:

1. The required corrector is excited with a sinusoidal sig-

nal of amplitude u0 and frequency f = ω

2π
Hz at time

tstart, ending at time tend = tstart + N/ f where N is the

number of cycles of the excitation and is chosen by the

user.

2. Beam position data from all enabled BPMs is collected

from time tstart to tend. To ensure synchronization of

the input and output signals, a large window of data

is taken and then sliced to the exact duration of the

excitation using a global timestamp.

3. The output sinusoid from each BPM can be expressed

as
y(t) = y0 sin(ωt + φ)

= I sin(ωt) +Q cos(ωt)
(6)

The IQ data is extracted by multiplying the output by

sin(ωt) and cos(ωt) respectively and filtering the high

frequency component by taking the mean over N .

The above process is repeated to generate measurements

for any required excitation frequency (up to Nyquist ( f s/2).

Therefore for each excitation frequency, a complex number

is obtained which has an amplitude (normalised by the in-

put amplitude) equal to the gain of the system and a phase

corresponding to the phase of the system i.e.

y =

√
I2
+Q2

φ = arctan
Q

I

(7)

where the gain of the system k is give by k = y0/u0.

CHARACTERISATION PROCEDURE

Fig. 2a and Fig. 2b show the measured frequency response

observed by a single eBPM between 10 Hz to 3 kHz for the

two mini-beta corrector magnets in straight I13 and a stan-

dard corrector magnet. The mini-beta correctors for both

straights were found to have the same response, therefore

only the responses of those in straight I13 are presented in

this paper. Typically, an excitation amplitude of 10 mA was

used however, the second corrector in each straight required a

larger excitation amplitude (40 mA) which was determined

by preliminary excitation tests. The magnitude of the re-

sponses shown in Fig. 2a and Fig. 2b are normalised to unity

gain for comparison of the dynamic behaviour. It should

be noted that the measured gain (in mm/A) is equivalent to

the response matrix element for the corresponding corrector

magnet and eBPM.

The procedure for identifying a transfer function model

that is appropriate of the design of the FOFB controller is

described in the following steps:
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(a) Horizontal frequency response measurements.
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(b) Vertical frequency response measurements.

Figure 2: Frequency response measurements for a standard corrector (red ‘×’) and mini-beta correctors (blue ‘�’ and green

‘�’) compared to the modelled frequency response (black ‘◦’) for horizontal and vertical planes. The model is a first order

model with bandwidth of 500 Hz and delay of 600 μs.

1. The approximate order of the model is determined. The

high frequency roll-off is determined by the order of the

model i.e. for a first order model, the high frequency

roll-off is −20 dB/decade. The measured responses

exhibit an approximate first order response which takes

the form

g(s) = k
a

s + a
(8)

where k is the steady state gain. The user should decide

whether a first order model is accurate enough or that a

higher order model is required for the purpose of the

model.

2. The open loop bandwidth is determined. The band-

width, a of the open loop system is defined as the

frequency (in rad.s−1) at which the magnitude of the

frequency response drops by 3 dB. Table 1 shows the

measured bandwidths for the different corrector mag-

nets.

3. The open loop delay is determined. The measured

phase responses of the corrector magnets are greater

than that expected for a first order system, indicating

that there is a delay element in the transfer function.

The delay can be extracted from the phase information

of the frequency response and fitted by a linear regres-

sion. The model with a delay term included is written

as

g(s) = k
a

s + a
e−sτd (9)

where τd is the delay in the system. To determine the

delay, τd the measured phase of the system dynamics

∠G( jω) is expressed as a first order system plus a delay,

Table 1: Measured Bandwidth for a Standard Corrector and

the Mini-beta Correctors for Vertical and Horizontal Planes

Magnet Horizontal Vertical

Standard 500 Hz 500 Hz

Mini-beta 1 700 Hz 700 Hz

Mini-beta 2 500 Hz 500 Hz

taking the form

∠G( jω) = ∠

(
a

jω + a
e− jωτd

)

∠G( jω) = ∠

(
a

jω + a

)
+ ∠

(
e− jωτd

) (10)

By using the relationship in (10) the delay element can

be extracted and expressed as

−τdω = ∠G( jω) − ∠

(
a

jω + a

)
(11)

Fig. 3 shows the measured delays for each magnet for

horizontal and vertical planes.

The measured responses show that the first mini-beta cor-

rector has a bandwidth of 700 Hz and the second, a band-

width of 500 Hz which matches the bandwidth of the stan-

dard corrector magnet. The measurements for the second

mini-beta corrector are noisier than that taken for the stan-

dard corrector and first mini-beta corrector. This indicates

that the excitation amplitude was too small for satisfactory

signal to noise performance, however using larger ampli-

tudes for the excitation activated a rate limiter which limited

the bandwidth of the open loop measurement. A delay of

600 μs was determined to be the best fit for all magnets.
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Figure 3: Phase introduced by the system latency in hori-

zontal and vertical planes for a standard corrector (red ‘×’)

and mini-beta correctors (blue ‘�’ and green ‘�’) compared

with a linear fit (black ‘◦’) of a 600 μs delay.

The derived models are also included in Fig. 2a and

Fig. 2b. The model captures the dynamic behaviour of the

system up to the bandwidth and fits the phase roll-off well.

The model with the structure given in (9) using the band-

width of the standard corrector magnet for each plane was

discretized [3] and used for the FOFB design. Therefore

it is important to assess the impact of the dynamic differ-

ences between the magnets on the performance of the FOFB

controller.

The sensitivity function given in (5) is used to determine

how well the corrector performs in terms of disturbance re-

jection and is shown in Fig. 4 for each corrector magnet in

the horizontal and vertical planes. Also included in Fig. 4 is

the theoretical sensitivity for the standard corrector which

predicts that at 10 Hz, the closed loop provides around 20 dB

attenuation of disturbances but at the cost of amplifying dis-

turbances above 150 Hz by a maximum of 3 dB at 400 Hz.

The sensitivity of the standard and mini-beta correctors pro-

vide similar levels of attenuation at most frequencies. The

data shows that there is no significant difference in sensi-

tivity measurements at low frequencies, which is expected

because the frequency response of the corrector magnets do

not differ below 500 Hz in each plane.

CONCLUSIONS

The advantage of the frequency response approach to

modelling the open loop response is that it can be mea-

sured directly and gives the frequency response immediately.

Furthermore, the user experiment parameters such as the

relevant dynamic frequencies, the duration of each excita-
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Figure 4: Measured sensitivity in horizontal and vertical

planes for a standard corrector (red ‘×’) and mini-beta cor-

rectors (blue ‘�’ and green ‘�’) compared to the theoretical

response (black ‘◦’).

tion, the sample frequency and the type of input signal can

be easily modified by the user. Also, as the input and output

signals are only analysed at specific frequencies, the amount

of data is reduced significantly from the number of time

domain samples to the number of considered frequencies.

Finally, frequency domain identification can deal equiva-

lently with time continuous models as with time discrete

models, which are useful for the design of the FOFB con-

troller. The main advantage of the procedure outlined in

this paper is the ease with which the experimental data can

be used for design purposes. No significant processing is

required to obtain a Bode plot which can then be used to

derive a simple model of the open loop to inform the design

of an appropriate compensator.
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