
TESTING THE UNTESTABLE: A REALISTIC VISION OF FEARLESSLY
TESTING (ALMOST) EVERY SINGLE ACCELERATOR COMPONENT

WITHOUT BEAM AND CONTINUOUS DEPLOYMENT THEREOF
A. Calia, K. Fuchsberger, M. Hostettler, CERN, Geneva, Switzerland

Abstract
Whenever a bug in some piece of software or hardware

stops beam operation, loss of time is rarely negligible and
the cost (either in lost luminosity or real financial one) might
be significant. Optimization of the accelerator availability
is a strong motivation to avoid such kind of issues. Still,
even at large accelerator labs like CERN, release cycles of
many accelerator components are managed in a “deploy and
pray” manner. In this paper we will give a short general
overview on testing strategies used commonly in software
development projects and illustrate their application on ac-
celerator components, both hardware and software. Finally,
several examples of CERN systems will be shown on which
these techniques were or will be applied (LHC Beam-Based
Feedbacks and LHC Luminosity Server) and describe why
it is worth doing so.

INTRODUCTION
An accelerator is a complex system, consisting of many

interlinked components, which are typically organized in a
control system of different layers from top-level applications
to actual hardware.

Fig. 1 shows a vertical slice of a typical accelerator control
system stack: On top there is the application layer, consisting
of a set of physics-aware applications used by operators,
which accesses the hardware through a middle layer. Below,
the hardware layer is responsible of actually driving the
hardware interacting with the beam.

An accelerator component is typically on one of these lay-
ers, and accessing or being accessed by one or more neigh-
bouring components from the other layers. E.g. a top-level
software component can access different hardware compo-
nents through the middle layer, while a hardware component
is often accessed by different top-level applications.

EXECUTION MODE
For testability of individual components or any subset

of the whole control system, it is required to reduce the
coupling between neighbouring components. To facilitate
decoupling, we propose different “execution modes” for an
accelerator component, which can make it independent of
the input and output of other components for testing and
development purposes.

Simulation
In a simulation mode, the component’s inputs are based

on a model. This model is dynamic and can be affected by
the execution of a component. The purpose of a simulated

GUI

Domain Logic

A
pp

lic
at

io
n

La
ye

r

Physics Abstraction

Hardware Access

M
id

dl
e

La
ye

r

Settings
Management

Hardware Front-End

Drivers / Firmware

H
ar

dw
ar

e
La

ye
r

Accelerator Hardware

Beam

Figure 1: Vertical slice of a typical control system.

model is to test the component in a dynamic environment
that can be close to the reality (production).

Ideally, it is possible to create various simulation models
to effectively test the component under different circum-
stances. For a web service, a particularly interesting test is
to verify the behaviour when network communications are
very unstable and randomly slow. In the case of a hardware
component, a challenging model can produce random noise
in the inputs signals of the hardware cards.

Scenario

A scenario is composed by a set of fixed values that are
the inputs of a component. Given the scenario’s input, it is
possible to assert the component’s output to spot errors.
Scenarios can be created from particular situations that

the component must be able to handle. These situations can
be artificially made, based on the component’s design, or
can be derived from experience. The latter case is especially
true in a high-availability system. In these kind of systems
it is precious to not introduce regressions during updates.

Proceedings of IBIC2016, Barcelona, Spain TUPG30

Overview and Commissioning

ISBN 978-3-95450-177-9

399 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Production
In production mode, the component is executed without

any restriction and it is not aware of the ongoing test. In
this context, all the components in production mode must
be able to fully access hardware and low-level systems.

For security reasons, the only part that can differ from the
real operational mode is the environment. If the component
(or components) to test are software, the environment is al-
lowed to be a sand-box in which a failure is not propagated
to the real operational environment. For a hardware compo-
nent, a testing facility that replicates the real environment is
highly advised.

Figure 2: LHC Luminosity Server in full simulation mode,
showing a luminosity plot while running a scan pattern used
for luminosity calibration. Since the server runs in simu-
lation mode, no accelerator controls are accessed and the
response (beam displacements and resulting luminosity) is
simulated.

TESTING STRATEGIES
Unit Tests
Unit Tests test each subcomponent, e.g. a class in a soft-

ware project or a part of a hardware device, individually
against a predefined set of scenarios and expected results.

Ideally unit tests should be implemented in an automated
fashion on every layer of the system to quickly spot and
pinpoint most breaking changes during development. No
communication between components are involved in such
tests.

Single-Component Integration Tests
Single-Component Integration Tests shall ensure proper

linking and communication between the individual subcom-
ponents, i.e. that the full component behaves correctly in a
particular scenario. While the subcomponents of the compo-
nent being tested should be linked as they are in production,
all communication to other components should be mocked.
Such tests can either run automatically against a prede-

fined set of scenarios and expected responses, or manually
with the component in simulation mode.

Integration Tests with Other Components
Once a component is found to be working, proper com-

munication to neighbouring components needs to be tested.
To allow this, two or more components are linked together,
while all components not involved in the tests should be
mocked up.

Such a test could e.g. ensure that a control application can
communicate to the hardware access layer, without actually
driving hardware. On the other hand, it could also allow
testing a hardware, it’s drivers and front-end layer without
beam, and without the upper layers of the control system.
During the testing, the scope of tests can gradually be

extended by involving more components, up to the final
commissioning with beam.

Sanity Checks in Operation
To ensure reliable operation over an extended period of

time without degradation, operational hardware can run
through a set of unit or single-component integration type
tests in every machine cycle. E.g. at the LHC, the Beam
Loss Monitors (BLM) execute a set of “sanity checks” when
preparing the machine for injection. [1]

ERROR HANDLING AND LOGGING
Once an accelerator component has been deployed, com-

missioned and put in operation, it is crucial to detect prob-
lems and report them to the operators. The worst case is a
component silently failing without any notice or explanation.

In case of a software component, this requires that possi-
ble errors and exceptions are properly handled, logged and
possibly displayed to the user. If the error is recoverable
from but could possibly affect further operations, a warning
should be issued to the user. If the software component can’t
recover from a particular error, it must fail in a well-defined
way, providing any available information on what problem
occurred to the user.
However, care must be taken not to raise false warnings,

as this leads to the warnings being ignored by the users. For
later offline analysis by the developers, a verbose debug log
and telemetry data can be collected through a central logging
and tracing service.

CONTINUOUS INTEGRATION
Continuous Integration (CI) refers to the ability of contin-

uously build and integrate software. This means run tests
with the latest version of each dependency to have finer in-
tegration. With this approach it is possible to immediately
spot errors and regressions since the changes between each
test run are small, possibly just a commit.
The CI process is often delegated to a CI server (Fig. 3)

that is also able to deploy a SNAPSHOT (development)
version of the software.

The deployment to production is a critical step since the
software may be used in operations, for example during
Physics Collisions in the LHC. Therefore, a Continuous

TUPG30 Proceedings of IBIC2016, Barcelona, Spain

ISBN 978-3-95450-177-9

400C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Overview and Commissioning



Deployment (CD) approach cannot be done in a automatic
way.

Nevertheless, the CI server can build and test the new
version of the software and set it ready for deployment. Then,
whenever the machine operator decides it is safe to deploy,
the CI server perform the deployment. This step should be
fully automatized and during the process all the running
instances of the software should be automatically restarted
and the links to run them updated.

Figure 3: CI server dashboard. It is used to keep track of
regressions introduced by commits on key projects. Each
time a project is updates, the corresponding and dependant
tests are run.

EXAMPLES
LHC Luminosity Server

The LHC Luminosity Server is used to control the beams
at the LHC collision points. In routine operation, it is
mostly used to perform automatic scans, displacing the
beams slightly against each other, to find the optimal head-
on collision point. For absolute calibration of the luminosity
monitors of the LHC experiments using the Van-der-Meer
method [2], it can also run arbitrary scan patterns as re-
quested by the experiments.
The Luminosity Server features a built-in simulation

mode, which allows to develop and test scan strategies and
patterns without accessing the middle layer at all. Hence
every developer can fearlessly start their own instance of the
server locally for testing and development, without interfer-
ing with other developers or even beam operation.

For integration tests with other components, the Luminos-
ity Server also provides partial simulation (Fig. 4), commu-
nicating with some neighbouring components while simu-
lating others. This is e.g. used to test the communication
with an LHC experiment regardless of and without affecting
any LHC beam operation in parallel, which saved several
hours of beam time in 2016 during the preparation of the
luminosity calibration sessions.

LHC Beam-Based Feedbacks
A system which could be tested only with beam for a long

time, is the LHC beam based feedback system. It processes
input from about 2000 devices (orbit, tune), calculates cor-

Figure 4: LHCLuminosity Server in partial simulationmode.
Here, e.g. the luminosities provided by the LHC experiments
can either be picked up, or replaced by simulated values. The
GUI provides a real-time view of both the real value and the
output of the simulator, and the data source can be changed
at any time.

rections at a rate of 12.5Hz and sends out corrections to
about 500 correction magnets.

For a very long time it was considered too complicated
to write a testing framework for this system. Finally, when
in 2015 an attempt was started anyhow, it proved to be less
complicated than expected. This is a very good example
which shows that with clever slicing of a system and starting
with simple tests, practically any system can be tested. Part
of the “fear” before starting to create the testing system was
based on the assumption that a full simulation framework
would have to be created, which would have to be as fast as
the feedback system. This of course would have been very
difficult and a lot of effort.

Instead going for the full simulation approach, the team
started out creating the simplest possible tests (using scenar-
ios) and moving on to complicated ones. First challenges
here were to get the system running in a testing environment.
Already this required restructuring proved to make the com-
ponents more decoupled. Since the feedback system uses
UDP packets to get input values and send corrections, this
was the obvious point to inject test data. By going small
steps, the team learned on the way how the system worked
and finally found ways to probe the system with well defined
scenarios (e.g. orbit outliers, constant orbits ...) without ever
closing the (simulation) loop.

In the meantime, there exist about 50 well defined tests run
on a CI server, which form a basic safety net. They are all
formulated in a concise DSL (Domain Specific Language),
to keep them short and clear [3]. Work still has to continue
in the future to evolve the framework together with new
features of the feedback system. Unit tests were not existent
for the original system. However, for new features which are
added, such unit test are developed and will soon also run
within continuous integration.

Proceedings of IBIC2016, Barcelona, Spain TUPG30

Overview and Commissioning

ISBN 978-3-95450-177-9

401 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



A similar approach is planned to be taken for other beam
instrumentation systems in the near future (Beam Loss Mon-
itors, Wirescanners).

More examples
In the above sections we picked only some examples from

projects from recent history to demonstrate the basic con-
cepts. However, there are many other projects which follow
already similar approaches. Some more worth mentioning
are:

• To measure the chromaticity of the LHC, a simple ap-
plication was developed in 2015 [4]. This application
modulates the RF frequency measures, the tune and
deducts the chromaticity values from harmonic fits to
both, tune signals and RF signal. Next to standard unit
tests, this project uses a similar approach than the Lu-
minosity Server: When in development mode, it has
a (very simple) model running which calculates tune
from the modulation and thus provides self-consistent
input signals for the application.

• A special system to survey power converter currents
and trigger interlocks in case of anomalies was devel-
oped for the LHC [5]. Also this system has a dedicated
development mode to allow to work without any hard-
ware access.

• YASP (Yet Another Steering Program), the standard
tool for orbit steering in all CERN accelerators, also
provides a simulation mode for development and de-
bugging.

While all these examples make heavy use of their simu-
lation modes, an integrated simulation mode across seve-
ral systems is currently not implemented anywhere in the
current accelerator control system at CERN. However, to
achieve more integration tests with other components, such
a mode would be highly desirable and future efforts will have
to go in that direction.

CONCLUSIONS
Testing distributed systems, like accelerator systems, is

hard but not impossible. While common practices in the
software domain in general, it is still less common in our
environment, especially the closer it gets to hardware (where
it also is more difficult). In the previous sections we cate-
gorized the different level of tests and gave examples how
they can be and how they are currently applied on different
projects. In order to enable fearless development and testing
of accelerator components, we consider the following ap-
proaches as important (most important first, most complex
last):

1. Any kind of development mode is practically a must.
This allows to develop, debug and test the component
(software, hardware) in isolation and removes the risk
to accidentally access e.g. a real device during devel-
opment. This already enables (at least manual) single
component integration tests.

2. For proper operation it is crucial to have proper error
reporting on all layers (Faults, Exceptions). Warnings
should only be issued in case the user is able to act on
them.

3. To enable post-mortem diagnosis, centrally stored and
easily searchable tracing information is indispensable.

4. For any software component, unit tests are usually a
standard approach. Next to providing a first safety net
against regressions, they also enforce a cleaner code
structure, if applied from the beginning.

5. If possible, automated testing is preferable compared
to a manual approach. If tests are automated, then the
step to continuous integration is a small one and is
highly recommended.

6. For hardware components, periodic sanity checks dur-
ing operation can ensure the proper functioning of de-
vices and help spotting degradation early.

7. It can get relatively complex to implement integration
tests with other components. However, they pay off
at some stage, because the only alternative for an ac-
celerator is to stop operation and test the components
interactions in production.

REFERENCES
[1] J. Emery et al., "First experiences with the LHC BLM sanity

checks", Topical Workshop on Electronics for Particle Physics
2010, Aachen, Germany.

[2] S. Van Der Meer, ISR-PO/68-31, KEK68-64

[3] S. Jackson et al., "Testing Framework for the LHCBeam-Based
Feedback System", this conference.

[4] K. Fuchsberger, G.H. Hemelsoet, "LHC Online Chromaticity
Measurement - Experience After One Year of Operation", this

[5] K. Fuchsberger et al., "LHC Orbit Correction Reproducibil-
ity and Related Machine Protection", Proc. IPAC 2012, New
Orleans, Louisiana, USA.

conference.

TUPG30 Proceedings of IBIC2016, Barcelona, Spain

ISBN 978-3-95450-177-9

402C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Overview and Commissioning


