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 Considerations for the Design of a BLM System
 Machine Protection
 Short vs. Distributed Detectors
 Machine Size and Radiation

 Background Sources
 Synchrotron Radiation
 Distant Losses
 Accelerating Structures

 Summary

Overview



Design 
Considerations



Eva Barbara HolzerIBIC 2015 September, 2015 4

Beam diagnostics —
operation and commissioning

Quench / damage protection

Activation / aging / human exposure

Beam Loss Monitors Roles



Machine 
Protection
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 LHC 2008 incident without beam
 Electrical arc provoked a He pressure 

wave damaging ≈600 m of LHC
 LHC magnets at 7 TeV: 10 GJ 

Energy stored in the Magnets — Release of 600 MJ

Over-pressure

Magnet displacement

Arcing @ interconnection
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 LHC at 7 TeV 360 MJ:
 Pilot bunch of 5×109 close to damage level
 Loss of 3×10-7 of nominal beam over 10 ms can 

create a quench

 SPS incident in June 2008,
400 GeV beam with 2 MJ
(J. Wenninger, 
CERN-BE-2009-003-OP)

Energy stored in the Beams — Uncontrolled Losses

≈10cm 

1MJ can 
heat and 
melt 1.5 kg 
of copper

World record: LHC 
140 MJ @ 4 TeV



Eva Barbara HolzerIBIC 2015 September, 2015 8

Machine Protection by BLM

 LHC
 Safely extract beam when loss exceeds threshold 

(on any of ≈3600 detectors) 
 ≈1.5 million thresholds depend on
 Detector location
 Beam energy
 Integration time (40µs–84s)

 CLIC
 Prevent subsequent injection when potentially dangerous beam 

losses are detected (“next cycle permit”)
 Damage to beam-line components determined by power density 

(not by beam power) of the beams
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 Machine protection system must be integrated in the machine design
 Dependability (reliability, availability, maintainability and safety) analysis  allowances for
 Probability of component damage due to malfunctioning 
 Downtime due to false alarms
 Downtime due to maintenance

Dependability (colloquially: reliability) analysis

Availability

RiskConsequences
>30 days downtime to change 

a magnet
≈3 h downtime to recover 

from a false alarm.

DependabilitySafety
Probability to loose a magnet: 

< 0.1/y. 
Number of false alarms per 

year: < 20/y.

Reliability
Hazard rates (λ)?
Failure modes?

Maintainability
Repair rates (µ)?

Inspection periods (τ)?



Short vs. 
Distributed 
Detectors
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Time resolution
Coverage

Position resolution
Position ↔ Magnitude

Loss magnitude

Machine protection

Short localised detectors vs. Long distributed detectors

Coverage
Cost

Short beams
Position resolution

Time resolution
Loss magnitude (calibration 

including attenuation)

Long trains
Position ↔ Time ↔ Magnitude

R&D needed for machine 
protection
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Cherenkov Fibers BLMs — Detection Principle 

 When a charged particle with v>c enters the fiber, photons are 
produced along Cherenkov cone

 Optical fibers for loss measurement are increasingly popular
 Overview: T. Obina ,Y. Yano, IBIC 2013;

L. Fröhlich et al., DIPAC 2011; F. Wulf, M. Körfer, DIPAC 2009; …

β
θ

core
Cherenkov

1cos
n

=

c

2/3c 2/3c fiber

photon detector photon detector
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 Insensitive to photons
 Insensitive to E and B fields
 Small and fast
 Relatively radiation hard (depending on type)
 Combination fiber / readout can adapt to a wide dose range
 Time resolution 1 ns
 Position resolution 0.5 – 1 m
 (Radiation induced) attenuation and dispersion (multi mode fibers)
 Position ↔ time ↔ magnitude 
 Ideas:
 Couple with localised high time resolution measurement
 Match pattern to a catalogue of known loss scenarios (experience, 

simulation)

Cherenkov Fiber BLMs — Pros and Cons



Eva Barbara HolzerIBIC 2015 September, 2015 14

Space Time Diagram

 Case: single loss location —
constant for all bunches 

 Simulations:
 Starting point of the losses can 

be determined from the 
signal’s rising edge, with: 
 < 1m longitudinal resolution
 ≈ 1ns time resolution

 First results from installation
at the Australian Synchrotron 
and at CTF3 (CLIC Test Facility):

E. Nebot: “Position Resolution of 
Optical Fibre-Based Beam Loss 
Monitors Using Long Electron Pulses”

Position Resolution for Long Bunches
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Position ↔ magnitude

Determine position and magnitude 
with simulations

Improve longitudinal coverage

UFO Losses
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 Fast and localised losses all around 
the ring believed to be caused by 
macro particles interacting with the 
beam

 “UFO”: Unidentified Falling Objects

 No quenches at 4 TeV
 Less heat deposited
 Lower magnetic field
 Conservative BLM 

thresholds

 6.5 TeV: thresholds set to
quench limit 
 quenches occurred

UFOs — Causing Quenches at 6.5 TeV

Tobias Baer
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:

 Coverage post-LS1:
increases sensitivity 
by a factor 30 
 100% coverage 
can be achieved

Relocation of 1/3 of Arc Detectors (Long Shutdown 1)

Pre-LS1

Post-LS1

A. Lechner, Workshop on Beam-Induced Quenches, CERN, 2014



Eva Barbara HolzerIBIC 2015 September, 2015 18

 If several detectors record the loss: Determine the loss position and 
magnitude with the help of simulations
 Loss position: +/- 1 m
 Number of inelastic proton-dust particle interactions: factor 2

 1–4 × 106 inelastic proton-dust particle interactions in this cell
 Other cells 10–100 times higher

UFO losses comparison simulation measurement

UFO Losses: Comparison Simulation — Measurement

A. Lechner, Workshop on Beam-Induced Quenches, CERN, 2014
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Require Very Accurate Models
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Require very small detector

 Diamond detector LHC 
(few ns)

 Small Cherenkov + ultrafast readout: 
Could they reach ≈100ps?

High Time Resolution
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 Fast and sensitive
 Small and radiation hard
 Used in LHC to distinguish 

bunch-by-bunch losses
 Dynamic range of monitor: 109

 Temporal resolution: few ns

LHC Diamond Detectors
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 50 ns bunch spacing
 Loss signal at 25 ns is from opposite beam (“cross talk”)
 sub 25 ns resolution required to resolve

Diamond: Arrival Time Histogram During Ramp

B. Dehning



Machine Size 
and Radiation
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Short detectors: cost, dependability 
per channel, data treatment

Front-end electronics in the tunnel 
 radiation tolerant

Low noise, low loss signal 
transmission: optical techniques

Machine Size Implications



Eva Barbara HolzerIBIC 2015 September, 2015 25

 LHC BLM front-end: charge-to-frequency 
converter
 500 Gy certified — ok for arcs
 Insertion regions: 

up to 300–800 m long cables

 New development: radiation hard 
Application Specific Integrated 
Circuit (ASIC)
 Dynamic range 106

 Bipolar input current
 Certified up to 100 kGy

Radiation Tolerant Readout

G. Venturini



Background
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Limit sensitivity to primary beam 
losses

Can compromise machine 
protection 

Background Implications



Synchrotron 
Radiation
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 FLUKA simulation study for CLIC damping ring (DR) arc
 Aim: worst case estimate using a simplified geometry
 Impacting on vacuum chamber: wall thickness 1.5 mm
 Detectors: 10 cm and 40 cm from beam pipe

 Many CLIC DR parameters similar to third generation light sources 
(but: very small longitudinal normalised emittance of 6 keV m)

Synchrotron Radiation Background

Elettra ALBA DLS ESRF APS Spring-8 ASLS CLIC DR

Energy [GeV] 2 3 3 6 7 8 3 2.86

Circumf. [m] 259 269 562 845 1104 1436 216 427.5

Lattice type DBA DBA DBA DBA DBA DBA DBA TME (arc) / 
FODO (LSS)

Current [mA] 300 400 300 200 100 100 200 200

(table based on: A. Wolski, Synchrotron Light Machines, CAS 2012)
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CLIC DR and Australian Synchrotron Comparison

E
[GeV]

Intensity
[electrons] bunches

Pulse 
length

[ns]

Circumf.
[m]

Frev
[MHz]

Bunch 
spacing

[ns]

γεx
[nm
rad]

γεy
[nm
rad]

CLIC DR 2.86 1.28×1012 312 156 427.5 0.73 0.5 472 4.8

ASLS 3.0 0.9×1012 300 600 216 1.38 2 58708 < 5

Dipole Wiggler

B [T] Ecrit [keV] ρ [m] L [m] Δθ
[mrad] B [T] Ecrit [keV]

CLIC DR 1 5.4 9.5 0.6 60 2.5 14

ASLS 1.3 7.8 7.7 1.7 220 1.9 12
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 LHC type ionization chambers (IC)
 N2 at 1.1 bar
 1.5 liter, 50 cm long

 Plastic NE102 scintillators, 0.8 liter 
(25×16×2 cm3) + photomultiplier (gain 104)

 Small quartz 
Cherenkov crystals, 1 cm3

+ photomultiplier (gain 104) 
OR + SiPM (gain 105)

 Silicon PIN diodes in current mode, 1 cm2, depletion layer 100 µm
(K. Wittenburg, CAS)

Simulated Detectors

File by Qwerty123uiop / CC BY-SA 3.0

https://en.wikipedia.org/wiki/File:PhotoMultiplierTubeAndScintillator.jpg%23globalusage
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Cherenkov detectors are 
insensitive to the 
synchrotron 
radiation induced charged 
particle showers

Synchrotron Radiation Spectrum

 Spectrum is not hard enough 
to produce electrons above 
the Cherenkov threshold in 
quartz (≈190 keV)

Total integral of the photon 
spectrum for E>1keV: 
3.1×1014 photons/s/mrad


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 Synchrotron radiation at 10 cm, outside 
of the ring, maximizing the signal:
 IC 80 pA
 Scintillator 64 A
 PIN 300 pA < typ. dark current
 Quartz insensitive

 Electron loss at same detector location:
 IC 1.5×10-6   GeV/e
 Scintillator 1.0×10-13 Gy/e
 PIN 1.4×10-13 Gy/e 
 Quartz 9.3×10-14 Gy/e

FLUKA Results
Scintillator at 40 cm
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 e-beam loss rates generating detector currents equal to the currents 
produced by synchrotron light:

Sensitivity Limits to Beam Loss due to Synchrotron Rad.

1.2 107 3.7 107
4.4 108

Worst 
case 
estimate

Shaded green area represents the 
range of e-beam losses which cannot 
be measured because of the 
dominating synchrotron radiation 
signal

LHC-IC 1.2 ×107 e/s
Plastic scintillator 3.7 ×107 e/s
PIN diode 4.4 ×108 e/s
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 Primary e-beam 
losses would be 
detectable for beam 
loss rates larger than:

Sensitivity Limits due to Detector Dark Current

Detection limit 
decreases in 
proportion to 
crystal size

LHC-IC ≥ 1.5×105 e/s
Plastic scintillator ≥ 5   ×102 e/s
PIN diode ≥ 1.5×109 e/s
Cherenkov crystal ≥ 4  ×107 e/s 

C
LI

C
 D

R
 C

R
D

: 
2×

10
7

e/
s/

m
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 Sensitive to ≈1×104 electrons lost in single location with MPPC (Multi-
Pixel Photon Counter)

 Linear response up to 1×109 electrons with PMT
 Combination of photon-sensors  dynamic range ≈105

Optical Fiber Loss Measurements, Australian Synchrotron

E. Nebot et al., “Measurement of Beam Losses at the Australian Synchrotron”, 
IBIC 2014

CLIC DR CRD: 
2×107 e/s/m
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 Quench protection
 Superconducting 6.3 km p-ring (920 GeV/c) 
 e-ring (30 GeV/c)
 Synchrotron radiation:
 Ecrit = 88 keV
 Dose rate ≈104 Gy/year

 Two silicon PIN diodes in 
coincidence counting 
mode + shielding box
 Efficiency charge particle >30%
 Efficiency photon 3.5×10-5

 10.4 MHz count rate (96 ns bunch spacing)
 Integration time: 5.2 ms — speed limited by low 

count rate
 Dynamic range of up to 109

 Good calibration: measured lifetime by current 
decay and losses agree within factor 2

PIN Diodes HERA Proton Ring
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 Photon coincidence counting:
 Statistically
 Electron created (photoelectric absorption, 

Compton effect) reaches second diode energy
  add thin metal layer between the diodes

 Electrons which lose energy are lost at dispersive 
aperture restrictions (close to horizontal quadrupoles)

PIN Diodes HERA Electron Ring

inside        outside



Distant Losses
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Collimation regions

Injection and extraction

Around interaction points

Distant Losses
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The CLIC (Compact Linear Collider) Two-Beam-Module

Energy 
range [GeV]

Pulse length Electrons 
per train

Drive Beam 2.4  0.24 244 ns ≈ 80 m 1.53×1014

Main Beam 9  1500 156 ns ≈ 50 m 1.16×1012

 Future e+/e– collider, centre of mass 
energy of 3 TeV

 High accelerating gradients 
(100 MV/m)
 novel two beam
acceleration method

 High intensity Drive Beam 
decelerated in Power-Extraction
and Transfer Structures (PETS) 

 RF power at 12 GHz is transferred 
to the Main Beam
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 Dose (Gy) from FLUKA simulations:

 At the very beginning of the Main Beam: Destructive Drive Beam loss 
provokes similar signal as destructive Main Beam loss in the region close to 
Main Beam quadrupole

 Not a machine protection issue —
dangerous loss would never 
go unnoticed

Distinguish Losses CLIC Two-Beam Module – “crosstalk”

Destructive Drive Beam loss 
1.0% of bunch train hits single 
aperture restriction

Destructive Main Beam loss 
0.01% of bunch train hits single 
aperture restriction

Energy

Drive Beam 2.4 GeV
Main Beam 9    GeV
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First Measurements CTF3 Two-Beam Module – “crosstalk”

 Little ionization chambers
 Optical fibers
 Drive / Main Beam: 120 / 200 MeV 
 First results show 1–5% “crosstalk” 

on the other beam

 10-3 losses of either beam 
unacceptable luminosity losses 
due to beam loading variations 
 FLUKA simulations show:

BLMDriveBeam up to 100×BLMMainBeam

 How to measure Main Beam 
losses in the presence of Drive 
Beam losses?

Drive Beam View

Main Beam View

M. Kastriotou et al., “BLM Crosstalk 
Studies at the CLIC Two-Beam Module”, 
MOPB045
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 Loss monitor closer to loss location  avoid that the signal is 
dominated by other radiation sources (e.g. physics debris at the 
insertion region triplet magnets)

 HL-LHC triplets: move detector inside the cryostat
 Operate in liquid helium at 1.9 K and at 2 T
 Dose of 2 MGy in 20 years, without access
 Fast pressure rise (1.1 to 20 bar) in case of quench

Cryogenic BLM at LHC
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 Since 2011 extensive 
classification program of the 
detector parameters in 
cryogenic temperature under 
radiation

 Single crystal chemical vapour 
deposition (scCVD) diamond

 p+-n-n+ silicon
 Both materials can operate up 

to 2 MGy:
 Diamond/silicon sensitivity 

reduction 14% / 25%
 Leakage current of Si irradiated 

at cold much less than at room 
temperature

Cryogenic BLM Tests

1 MGy

Now testing both detectors in 
LHC cryostat at
≈20 K under 
operational 
conditions

M. Bartosik, “Cryogenic Beam Loss Monitors for the 
Superconducting Magnets of the LHC”, MOPB042



Accelerating 
Structures
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Dark current (field emission) and 
voltage breakdown (electric arcs) 

 electrons and X-rays

Limits the sensitivity to primary 
beam losses

Can be monitored with BLM

RF Structures
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 Test at CTF3 of unloaded cavity
 Optical fiber 900 µm at 2.5 cm

distance (30 cm exposure)
 200ns RF pulses: Measured dark 

current and breakdown as function 
of cavity input power

 Extrapolated to 40 MW (unloaded) 
and 60 MW (loaded) structure

 Detected photons: 2×105 (dark current), 6×106 (breakdown) at 40 MW
  very high electron background

CLIC Main Linac Cavity

M. Kastriotou et al., “RF 
cavity induced sensitivity 
limitations on Beam Loss 
Monitors”, LA3NET 2015, 
Physics Procedia, to be 
published
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 Superconducting RF (SRF) cavities measure 
primary beam losses and dark current losses 
at Fermilab’s Advanced Superconducting 
Test Accelerator (ASTA)

 5 K (inside SRF cryo-module) to 350 K 
 Stainless steel vessel, coaxial design, 120 cm3, He-gas 1.0–1.5 bar 
 Sensitivity: 1.9 pA/(rad/h), max. dose rate: 30 krad/h
 Readout via current-to-frequency converter and FPGA-TDC
 Housing at -95 V 

Cryogenic Loss Monitors (CLM) at Fermilab

Fill port A. Warner and J. Wu, Physics 
Procedia 37 (2012) 2031.
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 Dark current measurements at the A0-photo-injector test accelerator 
and the Horizontal Test Stand (HTS)

First Measurements

Loss due to Dark current 
background at A0-photo-injector; 
measured to be ≈400 nA
downstream of bend magnet 40 µs RF gate (dark 

current only no photo-
electrons injected) 

HTS installation

Test cavity

A. Warner and J. Wu, “Cryogenic loss 
monitors with FPGA TDC signal processing”, 
Physics Procedia 37 (2012) 2031.
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 Pro — contra of localized vs. distributed systems
 Position resolution
 Time resolution
 Absolute measurement

 Challenges for machine protection, large machines and radiation 
environment

 Background sources limiting sensitivity to primary beam losses
 Synchrotron radiation
 Distant beam losses and physics collision debris
 RF accelerating structures

Summary



Thank you
for your 
Attention



Eva Barbara HolzerIBIC 2015 September, 2015 53

 Pro — contra of localized vs. distributed systems
 Position resolution
 Time resolution
 Absolute measurement

 Challenges for machine protection, large machines and radiation 
environment

 Background sources limiting sensitivity to primary beam losses
 Synchrotron radiation
 Distant beam losses and physics collision debris
 RF accelerating structures

Summary
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