

Beam Loss Monitoring for Demanding Environments

Eva Barbara Holzer

CERN, Geneva, Switzerland

IBIC 2015 Melbourne

Special thanks for their input to Sanja Damjanovic and Eduardo Nebot Contributions from: Bernhard Auchmann, Marcin Bartosik, Mark Boland, Bernd Dehning, Maria Kastriotou, Anton Lechner, Sophie Mallows, Giuseppe Venturini, Arden Warner, Kay Wittenburg, Manuel Zingl

Overview

- Considerations for the Design of a BLM System
 - Machine Protection
 - Short vs. Distributed Detectors
 - Machine Size and Radiation
- Background Sources
 - Synchrotron Radiation
 - Distant Losses
 - Accelerating Structures
- Summary

Design Considerations

Machine Protection

Energy stored in the Magnets — Release of 600 MJ

- LHC 2008 incident without beam
 - Electrical arc provoked a He pressure wave damaging ≈600 m of LHC
- LHC magnets at 7 TeV: 10 GJ

6

Energy stored in the Beams — Uncontrolled Losses

- LHC at 7 TeV 360 MJ:
 - Pilot bunch of 5×10⁹ close to damage level
 - Loss of 3×10⁻⁷ of nominal beam over 10 ms can create a quench
- 1MJ can heat and melt 1.5 kg of copper

 SPS incident in June 2008, 400 GeV beam with 2 MJ (*J. Wenninger, CERN-BE-2009-003-OP*)

Eva Barbara Holzer

7

Machine Protection by BLM

- LHC
 - Safely extract beam when loss exceeds threshold (on any of ≈3600 detectors)
 - ≈1.5 million thresholds depend on
 - Detector location
 - Beam energy
 - Integration time (40µs–84s)

- CLIC
 - Prevent subsequent injection when potentially dangerous beam losses are detected ("next cycle permit")
 - Damage to beam-line components determined by power density (not by beam power) of the beams

Dependability (colloquially: reliability) analysis

- Machine protection system must be integrated in the machine design
- Dependability (reliability, availability, maintainability and safety) analysis → allowances for
 - Probability of component damage due to malfunctioning
 - Downtime due to false alarms
 - Downtime due to maintenance

9

Short vs. Distributed Detectors

Short localised detectors vs. Long distributed detectors

Time resolution Coverage Position resolution Position ↔ Magnitude Loss magnitude

Machine protection

Coverage Cost

Short beams

Position resolution Time resolution Loss magnitude (calibration including attenuation)

Long trains Position ↔ Time ↔ Magnitude R&D needed for machine protection

Cherenkov Fibers BLMs — Detection Principle

When a charged particle with v>c enters the fiber, photons are produced along Cherenkov cone

- Overview: T. Obina ,Y. Yano, IBIC 2013;
 - L. Fröhlich et al., DIPAC 2011; F. Wulf, M. Körfer, DIPAC 2009; ...

Cherenkov Fiber BLMs — Pros and Cons

- Insensitive to photons
- Insensitive to E and B fields
- Small and fast
- Relatively radiation hard (depending on type)
- Combination fiber / readout can adapt to a wide dose range
- Time resolution 1 ns
- Position resolution 0.5 1 m
- (Radiation induced) attenuation and dispersion (multi mode fibers)
- Position ↔ time ↔ magnitude
 - Ideas:
 - Couple with localised high time resolution measurement
 - Match pattern to a catalogue of known loss scenarios (experience, simulation)

Position Resolution for Long Bunches

- Case: single loss location constant for all bunches
- Simulations:
 - Starting point of the losses can be determined from the signal's rising edge, with:
 - < 1m longitudinal resolution</p>
 - ≈ 1ns time resolution
- First results from installation at the Australian Synchrotron and at CTF3 (CLIC Test Facility):

E. Nebot: "Position Resolution of Optical Fibre-Based Beam Loss Monitors Using Long Electron Pulses"

UFO Losses

UFOs — Causing Quenches at 6.5 TeV

- Fast and localised losses all around the ring believed to be caused by macro particles interacting with the beam
- "UFO": Unidentified Falling Objects
- No quenches at 4 TeV
 - Less heat deposited
 - Lower magnetic field
 - Conservative BLM thresholds
- 6.5 TeV: thresholds set to quench limit \rightarrow quenches occurred

9.0E-02 8.0E-02

7.0E-02

6.0E-02 5.0E-02

[Gy/s]

Signal 4.0E-02 8 3.0E-02

(Aug./Sept.)

1380b

Arc UFOs

ble

Dose (from RS6) > 2.0 μ Gy

BLMQI.22R3.B2E10 MQ

fit (Gauss)

Tobias Baer

Relocation of 1/3 of Arc Detectors (Long Shutdown 1)

by a factor 30

Position of beam-dust particle interaction (m)

A. Lechner, Workshop on Beam-Induced Quenches, CERN, 2014

UFO Losses: Comparison Simulation — Measurement

Anton Lechner

- If several detectors record the loss: Determine the loss position and magnitude with the help of simulations
 - Loss position: +/- 1 m
 - Number of inelastic proton-dust particle interactions: factor 2

- 1-4 × 10⁶ inelastic proton-dust particle interactions in this cell
- Other cells 10–100 times higher

A. Lechner, Workshop on Beam-Induced Quenches, CERN, 2014

Require Very Accurate Models

Francesco Cerutti, Anton Lechner, Eleftherios Skordis (FLUKA team)

LHC Diamond Detectors

- Fast and sensitive
- Small and radiation hard
- Used in LHC to distinguish bunch-by-bunch losses
- Dynamic range of monitor: 10⁹
- Temporal resolution: few ns

Diamond: Arrival Time Histogram During Ramp

- 50 ns bunch spacing
- Loss signal at 25 ns is from opposite beam ("cross talk")
 → sub 25 ns resolution required to resolve

Machine Size and Radiation

Short detectors: cost, dependability per channel, data treatment

Front-end electronics in the tunnel \rightarrow radiation tolerant

Low noise, low loss signal transmission: optical techniques

Radiation Tolerant Readout

- LHC BLM front-end: charge-to-frequency converter
 - 500 Gy certified ok for arcs
 - Insertion regions: up to 300–800 m long cables

- New development: radiation hard Application Specific Integrated Circuit (ASIC)
 - Dynamic range 10⁶
 - Bipolar input current
 - Certified up to 100 kGy

Background

Limit sensitivity to primary beam losses

Can compromise machine protection

Synchrotron Radiation

Synchrotron Radiation Background

- FLUKA simulation study for CLIC damping ring (DR) arc
- Aim: worst case estimate using a simplified geometry
- Impacting on vacuum chamber: wall thickness 1.5 mm
- Detectors: 10 cm and 40 cm from beam pipe
- Many CLIC DR parameters similar to third generation light sources (but: very small longitudinal normalised emittance of 6 keV m)

	Elettra	ALBA	DLS	ESRF	APS	Spring-8	ASLS	CLIC DR
Energy [GeV]	2	3	3	6	7	8	3	2.86
Circumf. [m]	259	269	562	845	1104	1436	216	427.5
Lattice type	DBA	DBA	DBA	DBA	DBA	DBA	DBA	TME (arc) / FODO (LSS)
Current [mA]	300	400	300	200	100	100	200	200

(table based on: A. Wolski, Synchrotron Light Machines, CAS 2012)

CLIC DR and Australian Synchrotron Comparison

	E [GeV]	Intensity [electrons]	bunches	Pulse length [ns]	Circumf. [m]	F _{rev} [MHz]	Bunch spacing [ns]	γε _x [nm rad]	γε _y [nm rad]
CLIC DR	2.86	1.28×10 ¹²	312	156	427.5	0.73	0.5	472	4.8
ASLS	3.0	0.9×10 ¹²	300	600	216	1.38	2	58708	< 5

		C	Wiggler				
	<i>B</i> [T]	E _{crit} [keV]	ρ [m]	<i>L</i> [m]	<i>∆θ</i> [mrad]	<i>B</i> [T]	<i>E_{crit}</i> [keV]
CLIC DR	1	5.4	9.5	0.6	60	2.5	14
ASLS	1.3	7.8	7.7	1.7	220	1.9	12

Simulated Detectors

- LHC type ionization chambers (IC)
 - N₂ at 1.1 bar
 - 1.5 liter, 50 cm long
- Plastic NE102 scintillators, 0.8 liter (25×16×2 cm³) + photomultiplier (gain 10⁴)

Silicon PIN diodes in current mode, 1 cm², depletion layer 100 μm

Synchrotron Radiation Spectrum

Sanja Damjanovic

 Spectrum is not hard enough to produce electrons above the Cherenkov threshold in quartz (≈190 keV)

Cherenkov detectors are insensitive to the synchrotron radiation induced charged particle showers

FLUKA Results

- Synchrotron radiation at 10 cm, outside of the ring, maximizing the signal:
 - IC 80 pA
 - Scintillator 64 A
 - PIN 300 pA < typ. dark current</p>
 - Quartz insensitive

- Electron loss at same detector location:
 - IC 1.5×10⁻⁶ GeV/e
 - Scintillator 1.0×10⁻¹³ Gy/e
 - PIN 1.4×10⁻¹³ Gy/e
 - Quartz 9.3×10⁻¹⁴ Gy/e

Sanja Damjanovic

Sensitivity Limits to Beam Loss due to Synchrotron Rad.

 e-beam loss rates generating detector currents equal to the currents produced by synchrotron light:

LHC-IC	1.2 ×10 ⁷ e/s
Plastic scintillator	3.7 ×10 ⁷ e/s
PIN diode	4.4 ×10 ⁸ e/s

Sensitivity Limits due to Detector Dark Current

 Primary e-beam losses would be detectable for beam loss rates larger than:

LHC-IC	≥ 1.5×10 ⁵ e/s
Plastic scintillator	≥ 5 ×10² e/s
PIN diode	≥ 1.5×10 ⁹ e/s
Cherenkov crystal	≥ 4 ×10 ⁷ e/s

Optical Fiber Loss Measurements, Australian Synchrotron

- Sensitive to ≈1×10⁴ electrons lost in single location with MPPC (Multi-Pixel Photon Counter)
- Linear response up to 1×10⁹ electrons with PMT
- Combination of photon-sensors → dynamic range ≈10⁵

E. Nebot et al., "Measurement of Beam Losses at the Australian Synchrotron", IBIC 2014

- Quench protection
- Superconducting 6.3 km p-ring (920 GeV/c)
- e-ring (30 GeV/c)
- Synchrotron radiation:
 - E_{crit} = 88 keV
 - Dose rate ≈10⁴ Gy/year
- Two silicon PIN diodes in coincidence counting mode + shielding box
 - Efficiency charge particle >30%
 - Efficiency photon 3.5×10⁻⁵
- 10.4 MHz count rate (96 ns bunch spacing)
- Integration time: 5.2 ms speed limited by low count rate
- Dynamic range of up to 10⁹
- Good calibration: measured lifetime by current decay and losses agree within factor 2

PIN Diodes HERA Electron Ring

- Photon coincidence counting:
 - Statistically
 - Electron created (photoelectric absorption, Compton effect) reaches second diode energy
 - \rightarrow add thin metal layer between the diodes
- Electrons which lose energy are lost at dispersive aperture restrictions (close to horizontal quadrupoles)

Fig. 2: The directions of synchrotron radiation and losses

Distant Losses

The CLIC (Compact Linear Collider) Two-Beam-Module

- Future e⁺/e⁻ collider, centre of mass energy of 3 TeV
- High accelerating gradients (100 MV/m)
 → novel two beam acceleration method
- High intensity Drive Beam decelerated in Power-Extraction and Transfer Structures (PETS)
- RF power at 12 GHz is transferred to the Main Beam

	Energy range [GeV]	Pulse length	Electrons per train	
Drive Beam	2.4 → 0.24	244 ns ≈ 80 m	1.53×10 ¹⁴	
Main Beam	9 → 1500	156 ns ≈ 50 m	1.16×10 ¹²	

Distinguish Losses CLIC Two-Beam Module – "crosstalk"

Dose (Gy) from FLUKA simulations:

Sophie Mallows

Destructive Drive Beam loss 1.0% of bunch train hits single aperture restriction

- At the very beginning of the Main Beam: Destructive Drive Beam loss provokes similar signal as destructive Main Beam loss in the region close to Main Beam quadrupole
- Not a machine protection issue dangerous loss would never go unnoticed

	Energy
Drive Beam	2.4 GeV
Main Beam	9 GeV

First Measurements CTF3 Two-Beam Module – "crosstalk"

- Little ionization chambers
- Optical fibers
- Drive / Main Beam: 120 / 200 MeV
- First results show 1–5% "crosstalk" on the other beam

M. Kastriotou et al., "BLM Crosstalk Studies at the CLIC Two-Beam Module", MOPB045

Maria Kastriotou

- 10⁻³ losses of either beam → unacceptable luminosity losses due to beam loading variations
- FLUKA simulations show: BLM_{DriveBeam} up to 100×BLM_{MainBeam}
- How to measure Main Beam losses in the presence of Drive Beam losses?

Cryogenic BLM at LHC

- Loss monitor closer to loss location → avoid that the signal is dominated by other radiation sources (e.g. physics debris at the insertion region triplet magnets)
- HL-LHC triplets: move detector inside the cryostat
 - Operate in liquid helium at 1.9 K and at 2 T
 - Dose of 2 MGy in 20 years, without access
 - Fast pressure rise (1.1 to 20 bar) in case of quench

Cryogenic BLM Tests

Marcin Bartosik, C. Kurfuerst, B. Dehning

- Since 2011 extensive classification program of the detector parameters in cryogenic temperature under radiation
- Single crystal chemical vapour deposition (scCVD) diamond
- p⁺-n-n⁺ silicon
- Both materials can operate up to 2 MGy:
 - Diamond/silicon sensitivity reduction 14% / 25%
- Leakage current of Si irradiated at cold much less than at room temperature

M. Bartosik, "Cryogenic Beam Loss Monitors for the Superconducting Magnets of the LHC", MOPB042

Now testing both detectors in LHC cryostat at ≈20 K under operational conditions

Accelerating Structures

Limits the sensitivity to primary beam losses

Can be monitored with BLM

Maria Kastriotou

CLIC Main Linac Cavity

- Test at CTF3 of unloaded cavity
- Optical fiber 900 µm at 2.5 cm distance (30 cm exposure)
- 200ns RF pulses: Measured dark current and breakdown as function of cavity input power
- Extrapolated to 40 MW (unloaded) and 60 MW (loaded) structure

(a) The BLM (red fibre) above the CLIC structure (in the middle)

- Detected photons: 2×10⁵ (dark current), 6×10⁶ (breakdown) at 40 MW
- → very high electron background

M. Kastriotou et al., "RF cavity induced sensitivity limitations on Beam Loss Monitors", LA3NET 2015, Physics Procedia, to be published

Fig. 5. Detected photons and estimation of the number of electrons with $\beta = 1$ that will give the respective signal when crossing the BLM

Cryogenic Loss Monitors (CLM) at Fermilab

- Superconducting RF (SRF) cavities measure primary beam losses and dark current losses at Fermilab's Advanced Superconducting Test Accelerator (ASTA)
- 5 K (inside SRF cryo-module) to 350 K
- Stainless steel vessel, coaxial design, 120 cm³, He-gas 1.0–1.5 bar
- Sensitivity: 1.9 pA/(rad/h), max. dose rate: 30 krad/h
- Readout via current-to-frequency converter and FPGA-TDC
- Housing at -95 V

Arden Warner

IBIC 2015

First Measurements

 Dark current measurements at the A0-photo-injector test accelerator and the Horizontal Test Stand (HTS)

Loss due to Dark current background at A0-photo-injector; measured to be ≈400 nA downstream of bend magnet 40 µs RF gate (dark current only no photoelectrons injected) A. Warner and J. Wu, "Cryogenic loss monitors with FPGA TDC signal processing", _eCrov Physics Procedia 37 (2012) 2031.

Test cavity

HTS installation

Arden Warner

Summary

- Pro contra of localized vs. distributed systems
 - Position resolution
 - Time resolution
 - Absolute measurement
- Challenges for machine protection, large machines and radiation environment
- Background sources limiting sensitivity to primary beam losses
 - Synchrotron radiation
 - Distant beam losses and physics collision debris
 - RF accelerating structures

Thank you for your Attention

Summary

- Pro contra of localized vs. distributed systems
 - Position resolution
 - Time resolution
 - Absolute measurement
- Challenges for machine protection, large machines and radiation environment
- Background sources limiting sensitivity to primary beam losses
 - Synchrotron radiation
 - Distant beam losses and physics collision debris
 - RF accelerating structures