

First LHC Emittance Measurements at 6.5 TeV

Maria Kuhn^{1,2} – September 16, 2015

F. Antoniou², E. Bravin², B. Dehning², J. Emery², V. Kain², A. Langner^{1,2}, Y. Papaphilippou², E. Piselli², G. Trad², ¹Hamburg University, Hamburg, Germany, ²CERN, Geneva, Switzerland

Introduction: LHC Cycle and Beam Parameters

Introduction: LHC Cycle and Beam Parameters

o Injection	1200	LHC Cycle	· · · 7000
o Ramp	1000	Energy	- 6000
o Squeeze	E 800	ramp / (20.2/min)	
o Collisions	* 600 * 600 400 200 0 400 10 450 Ge injection plateau (30min)	β* n (11	squeeze 2.5 min) 2000 b 1000 0
Proton beam parameters	LHC Design	2012 LHC	Early 2015 LHC
# bunches/ beam	2808	1374	3 - 458
Bunch spacing [ns]	25	50	25 and 50
Mean bunch length [ns]	1.3	1.2	1.2
Bunch intensity [10 ¹¹ p]	1.15	1.1 - 1.7	1.0 – 1.2
Emittance at injection [µm]	3.5	1.5 – 2.0	1.5 – 3.0
Collision energy/beam [TeV]	7	4	6.5
Emittance at collision [µm]	3.75	2.4	1.5 – 4.0
β* at ATLAS/CMS [m]	0.55	0.6	0.8

U

Reminder: 2012 Emittance Blow-up

- o In 2012 LHC was operated with high brightness beams.
 - Transverse emittance could not be preserved during the LHC cycle.
 - ~ 0.4 0.9 μm normalized emittance growth from LHC injection to start of collisions.
 - But emittance measurement precision during LHC Run 1 doubtful.

LHC Wire Scanner Intensity Limitations

- o Several types of beam profile measurement systems in the LHC.
 - The wire scanners are the most precise and versatile instruments.
 - Two operational wire scanners per beam.
 - Horizontal and vertical.
- o Wire scanners cannot be used with high intensity physics fills.
 - Synchrotron light telescope (BSRT) is used for that purpose.
- o BSRT cross calibrated with wire scanners.
- o Currently, wire scanners are the only instrument to measure beam sizes through the LHC energy ramp.
 - Low intensity test fills (a few bunches) are measured to evaluate emittance preservation during the LHC cycle.

UH

Run 2 LHC Wire Scanner Accuracy

- o Transverse normalized emittance ϵ :
 - (For location with no dispersion)

Wire scanner beam size σ accuracy

- Wire position measurement precision
 - Estimated position measurement potentiometer precision: 50 μm
- Wire position measurement calibration
 - Verified with beam by orbit bump scans at the wire scanner location

LHC Run 2 optics measured with k-modulation at 450 GeV and turnby-turn phase advance method at 6.5 TeV.

- β function accuracy better than 3 %.

Wire Position Measurement Calibration

- o Using local orbit bumps to verify the wire position measurement calibration of the wire scanners.
 - Beam position measured with LHC orbit system and extrapolated to wire scanner.
 - Compared to mean position obtained from Gaussian fit to measured transverse beam profile.
 - Measurements at 450 GeV and 6.5 TeV are consistent.

Wire Scanner Emittance Measurement Errors

- o Wire scanner position calibration verification results ($\Delta \epsilon_{calibration}$):
 - Another set of orbit bumps foreseen for the near future to check reproducibility of obtained results.
 - The results in this talk do not include a correction of the calibration.
- o All wire scanner measurements show large σ spread from scan to scan ($\Delta \epsilon_{450GeV}$ and $\Delta \epsilon_{6.5TeV}$).
 - Depending on scanner and energy.

Wire Scanner	$\Delta \epsilon_{calibration}$ [%]	Δε _{450GeV} [%]	Δε _{6.5TeV} [%]
B1H2	+ 7.2	25	20
B1V2	- 5.2	20	10
B2H1	+ 9.0	25	15
B2V1	+ 6.6	15	10

Photomultiplier Working Point Investigations

- o Wire scanner shower product amplified by photomultiplier (PM).
 - Amplification settings (gain + filter) can alter obtained beam profile.
- o LHC Run 1: strong dependence of measured σ on PM settings.
- o Optimum PM working point has to be established!
 - Scan through all available gain and filter setting combinations.

Bunches with different beam sizes were injected.

To remove natural ε growth, scans with fixed reference settings done after each settings change.

→ Exponential fit

UH

Example: B2V1 at 450 GeV

M. Kuhn - Sept. 16, 2015

Photomultiplier Working Point Investigations

- o Wire scanner shower product amplified by photomultiplier (PM).
 - Amplification settings (gain + filter) can alter obtained beam profile.
- o LHC Run 1: strong dependence of PM settings on measured σ .
- o Optimum PM working point has to be established!
 - Scan through all available gain and filter setting combinations.

Measured beam sizes minus the fitted growth.

Measurements with same gain + filter settings are averaged.

- No sign of PM saturation at 450 GeV could be detected.
- → Same for 6.5 TeV.

UH

First Emittance Measurements (1)

o Example Fill 4284 (August 28, 2015):

3 bunches with different initial emittances, intensities (0.6 – 1.1 x 10¹¹ ppb) and bunch lengths (1.0 – 1.25 ns).

IBS simulations with MADX IBS module include measured initial beam parameters, dispersion, and radiation damping.

➔ Measurements in the horizontal planes match IBS simulation.

UH

First Emittance Measurements (2)

Example Fill 4284 (August 28, 2015): 0

- 3 bunches with different initial emittances, intensities (0.6
 - 1.1×10^{11} ppb) and bunch lengths (1.0 1.25 ns).

IBS simulations with			
MADX IB	S module		
include	measured		
initial	beam		
parameters,			
dispersion, and			
radiation damping.			

Measurements in horizontal the planes match IBS simulation.

	ε _{450GeV} [μm]	ε _{6.5TeV} [μm]	Δε [%]	Δε _{sim} [%]
B1H	1.90	2.08	9	8
B1V	1.71	2.04	19	-2
B2H	1.50	1.65	10	10
B2V	1.58	1.95	23	-2

Emittance growth through the cycle of bunch 3

Vertical emittance growth through the cycle could not be reproduced with IBS simulations.

Emittance Growth during the LHC Ramp

- o Measured β during ramp not yet available.
 - Using linear interpolation of measured β at injection + flattop.
- o Current β knowledge results in unphysically growing/shrinking ϵ .
 - Run 1 experience: non-monotonically changing β functions during the ramp.
 Measured Emittance vs. IBS Simulation Fill 4284 simulation

Measurements in the horizontal planes consistent with IBS simulations during the ramp.

Emittance Preservation during the Squeeze

- o Within measurement accuracy emittances are conserved during the β^{\star} squeeze.
 - Result is reproducible.

Emittance Growth Squeeze Fill 3960

Emittances measured with BSRT and averaged over several hundred measurements.

Also need measured β functions during the squeeze.

M. Kuhn - Sept. 16, 2015

Emittance at Start of Collisions

- Fill 3954 (July 4, 2015), one bunch in collision.
- According to experts ATLAS luminosity low by ~10 % with uncertainty±10 %.
 - 5 % error on crossing angle
 - ± 1 cm error on measured bunch length.
 - β^* measured with k-modulation with 1 % uncertainty.

L Luminosity
k # bunches
N # protons / bunch
f Revolution freq.
F Luminosity
reduction factor

	Injection	Collision	Growth	
WS ε [μm]	2.51 ± 0.10	2.75 ± 0.20	0.24	10 %
ATLAS ε [μm]	n.a.	2.97 ± 0.36	0.46	19 %

- o Preliminary: ATLAS and wire scanner results agree within errors.
 - Better than during Run 1.

Radiation Damping at 6.5 TeV

- At high energies protons circulating in the LHC emit enough synchrotron radiation to modify the beam parameters
 - First observed during LHC Run 2
 - Counteracts IBS: reduction of vertical emittance

Simulations with MADX IBS module.

- ➔ Simulation predicts slightly faster emittance decrease than measured with BSRT.
- Additional emittance growth from proton collisions + beam-beam effects not included in the simulation.

Current Performance of the LHC

- o Emittance in collisions derived from luminosity.
- o Injection emittance of first batch measured with SPS and LHC wire scanners.

Emittance blow-up through the cycle:

- 50 ns beams show very little blow-up (~ 10 %), much smaller than during Run 1.
- o Large blow-up for 25 ns beams (25 % for most recent fills).
 - Electron cloud effects
 - Beam instabilities

M. Kuhn -

UH

Summary & Conclusion

- o Good progress in understanding wire scanner emittance measurements for LHC Run 2.
 - Wire scanner calibration verified, no PM saturation effects detected.
- **Emittance growth during the LHC cycle:**
 - Horizontal emittance growth matches IBS simulations.
 - Small growth in the vertical planes not yet understood.
 - Caveat: single bunch fills.
 - Synchrotron radiation damping observed for the first time at 6.5 TeV.
 - With still not fully calibrated luminosity data: emittances from wire scans and ATLAS luminosity agree within errors.
- Smaller emittance blow-up (~ 10 %) through the cycle than during Run 1 for 50 ns beams.
- o 25 ns physics beams show much larger growth.
 - Electron cloud effects and beam instabilities.

APPENDIX

M. Kuhn - Sept. 16, 2015

Outline

- o LHC cycle and beam parameters
 - LHC Run 1 transverse normalized emittance blow-up
- o LHC wire scanner intensity limitations
- o Run 2 LHC wire scanner accuracy
 - Wire position measurement calibration
 - Photomultiplier working point investigations
- o First transverse normalized emittance measurements
 - Emittance growth during the LHC ramp
 - Emittance preservation during the squeeze
 - Emittance at start of collisions
 - Radiation damping at 6.5 TeV
- o Current performance of the LHC

CERN Accelerator Complex

Photomultiplier Saturation Studies Run 1

- See measurements of 2012

Observed strong gain dependence at 450 GeV and 4 TeV during Run 1!

PM saturation studies at 450 GeV in 2012.

PM saturation studies at 4 TeV in 2012.

Photomultiplier Working Point at 6.5 TeV

- o Measurements at 6.5 TeV more difficult.
 - Smaller range of possible PM settings before ADC saturation.
- o No evident sign of PM saturation at 6.5 TeV could be seen.

UH

- o Run 1 investigations showed significant dependency of measured beam size on PM settings.
- → LHC wire scanner upgrade during Long Shutdown 1:
 - One broken wire scanner replaced (beam 2).
 - Power supply schematics upgraded.
 - PM gain dependency on light intensity reduced.

UH

LHC Optics Measurements

o Can use results from optics measurements with the turn-by-turn phase advance method and k-modulation for:

	IR4			IP1/2/5/8	
	Injection	Ramp	Flattop	After Squeeze	β*
K-modulation	×				×
Turn-by-turn			×	×	

- o Outstanding measurements:
 - K-modulation at 6.5 TeV and after the squeeze
 - Turn-by-turn phase advance measurements at 450 GeV (repeated) and during the ramp!
- o For emittance plots: using measured β where possible
 - β function measurement error < 3 %
 - Maximum measured beta beat is 5 % at the wire scanners
 - Linear interpolation during the ramp and squeeze

β* Measurements

o Sinusoidal k-modulation in IP1/5 on August 8, 2015

Bunch Length Measurement

- o Longitudinal bunch shape not Gaussian at 6.5 TeV
 - Due to controlled longitudinal RF blow-up at flattop energy
- o But LHC bunch length monitor publishes 4σ bunch length values based on FWHM algorithm assuming Gaussian profiles
- → Bunch length error ±1 cm!
- \rightarrow "True" emittance from luminosity should be larger by 0.1 μ m

