Asian Accelerator Developments & Upcoming Construction Projects

Zhentang Zhao ghai Instituto of Applied P

Shanghai Institute of Applied Physics IBIC2015, Melbourne, Sept.13-17, 2015

Outlines

- Introduction
- Light Source Accelerators
- Colliders
- Proton and Heavy Ion Accelerators
- Summary

This overview focuses mainly on the accelerator facilities for scientific research

Acknowledgement

Katzunori Akai, Rakesh Bhandari, Haroyuki Hama, Tetsuya Ishikawa, Prapong Klysubun, In-Soo Ko, Yukinori Kobayashi, Sachio Komamiya, Gwo-huei Luo, Shin-ichiro Michizono, Shogo Sakanaka

Chao Feng, Shinian Full, Bocheng Jiang, Weimin Pan, Qing Qin, Chuanxiang Tang, Lin Wang, Dao Xiang, Hongwei Zhao, Qinglei Zhang, Tianjue Zhang, Wenzhi Zhang

Introduction

- Asia is one of most active contents to develop particle accelerators
- National institutes and universities as well as high tech companies are the main builders
- The fields accelerators served extend from fundamental research to industrial application and medical treatment
- Accelerator facility became one of the most important lager scale scientific infrastructure

Light Source Accelerator Facilities

- Synchrotron Radiation Facilities
- Free Electron Lasers
- Energy Recovery Linacs
- Thomson Scattering Sources
- THz and Ultra-low Emittance UED/UEM

Synchrotron Light Source, FEL & ERL

Asian Light Sources in User Service

Facility	Location	Energy /GeV	Circumference /m	Emittance /nm.rad	Current /mA	Status	Open year
SPRING-8	Hyogo	8	1436	2.8	100	Operating	1997
SSRF	Shanghai	3.5	432	3.9	300	Operating	2009
PLS-II	Pohang	3	281.82	5.9	400	Operating	2012
Indus-II	Indore	2.5	172.5	58	300	Operating	2008
TLS	Hsinchu	1.5	120	25	240	Operating	1994
PF-AR	Tsukuba	6.5	377	293	60	Operating	1986
PF	Tsukuba	2.5	187	34.6	450	Operating	1982
BSRF	Beijing	2.5	240.4	76	250	Operating	1991
SABARU	Hyogo	1.5	118.7	38	500	Operating	1999
SAGA-LS	Tosu	1.4	75.6	25	300	Operating	2006
CJSRF	Nagoya	1.2	72	53	300	Operating	2012
SPS	Bangkok	1.2	81.3	41	100	Operating	2005
HLS-II	Hefei	0.8	66.13	<40	300	Operating	2015
UVSOR	Okazaki	0.75	53.2	17	300	Operating	1984
AURORA	Kusatsu	0.7	10.97	2400	300	Operating	1995
SSLS	Singapore	0.7	10.8	500	400	Operating	2001
HiSOR	Hiroshima	0.7	22	400	300	Operating	1997

Examples: Synchrotron Light Sources in Asia

TPS & TLS

New Light Sources or Upgrades in Construction and Advanced Planning

		Energy	Circumference	Emittance	Current		Open
Facility	Location	/GeV	/m	/nm.rad	/mA	Status	year
TPS	Hsinchu	3	518.4	1.6	500	Commissioning	2016*
SESAME	Amman	2.5	133.2	26	400	Constructing	2017*
ILSF	Tehran	3	297.6	3.278	400	R&D	2018*
CANDLE	Armenia	3	216	5.19	350	R&D	2018*
HEPS	Beijing	6	1295.6	0.055	200	Designing	
SPRING-8 II	Hyogo	6	1435.95	0.115	100	Designing	
SSRF-U	Shanghai	3	432	0.20	300	Designing	
TAC	Ankara	3	466.8	0.68	500	Designing	
SLiT-J	Sendai	3	339.92	0.85	400	Designing	

- Synchrotron light source enters a new phase with MBA lattice to approach diffraction limited storage ring regime.
- Emittance will be reduced by a factor of 10 to 100

Energy, Emittance and Circumference

** Low emittance mode @ 3.0GeV

Taiwan Photon Source – in Commissioning

Energy	3 GeV (maximum 3.3 GeV)				
Current	500 mA at 3 GeV (Top-up injection)				
SR circumference	518.4 m (h = $864 = 2^5 \cdot 3^3$, dia.= 165.0 m)				
BR circumference	496.8 m (h = 828 = 2 ² ·3 ² ·23, dia.= 158.1 m)				
Lattice	24-cell DBA				
Straight sections	12 m x 6 ($\sigma_v = 12 \ \mu m$, $\sigma_h = 160 \ \mu m$) 7 m x 18 ($\sigma_v = 5 \ \mu m$, $\sigma_h = 120 \ \mu m$)				

Storage Ring Circumference (m)	518.4
Energy (GeV)	3.0
Beam current (mA)	500
Natural emittance (nm-rad)	1.6
Straight sections (m)	12 (x6) + 7 (x18)
Radiofrequency (MHz)	499.654
Harmonic number	864
RF voltage (MV)	3.5
Energy loss per turn (dipole) (keV)	852.7
Betatron tune	26.18/13.28
Momentum compaction (α_1, α_2)	2.4×10 ⁻⁴ , 2.1×10 ⁻³
Natural energy spread	8.86×10-4
Damping time (ms)	12.20 / 12.17 / 6.08
Natural chromaticity	-75 / -26
Synchrotron tune	0.00609
Bunch length (mm)	2.86

TPS Ring and Experimental area

Tunnel for accelerator components12

TPS/TLS control room

EPU48,3.2m & 3.2m

Replaced 5-cells Petra cavities for phase-I SRF

SRF cavity is ready in tunnel

13

HLS-II: An Upgrade Project

Construct a new injector and a new storage ring

- Increase 4 straight sections for installing more IDs
- •Reduce emittance to Increase brightness substantially
- •Build 800MeV linac for full energy (top-up) injection
- •Build five new beamlines

SLiT-J Under Design

A High Energy Photon Source under R&D (Next synchrotron light source in Beijing, China)

- Excellent performance
 - **Brightness:** 10²¹
 - ✓ Hard X-ray: 300keV
 - ✓ Short pulse: 7 ps
- More capabilities on the support of the scientific platform

Beam energy E ₀	6	GeV
Beam current I ₀	200	mA
Circumference	1295.6	m
Horizontal damping partition number $J_x/J_y/J_z$	1.38/1./1.62	
Natural emittance	55	рт
Working point $(x/y/z)$	113.196/41.277/0.002	
	9	
Natural chromaticity (x/y)	-149.0/-128.2	
Number of 7BA achromats	48	
Number of low-beta 6-m ID sections	48	
Beta functions in low-beta straight section (x/y)	7.6/3.3	m
Damping times $(x/y/z)$	18.8/26.0/16.0	ms
Energy loss per turn, U ₀	1.995	MeV
Energy spread σ_{δ}	0.000799	
Momentum compaction	3.67×10 ⁻⁵	
RF voltage, V _{rf}	6.0	MV
RF frequency, f _{rf}	499.8	MHz
Harmonic number	2160	
Natural bunch length σ_z	2.07	mm

Promotion on

- nm level high brightness focusing spot
- ✓ energy resolution at sub-meV
- ✓ Time resolution at ps
- ✓ Capacity on penetrating power
- ✓ Combination on multi-purpose

High Gain FEL Facilities in Asia

HG FEL	Location	E/GeV	Туре	L/m	Wav/nm	RP-Hz	Driver	FEL-type	St	Lasing
SCSS	Japan	0.3	T,U	50	50	60	Linac(c)	SASE,DS	0	2006
SDUV	China	0.2	т	65	150-250	10	Linac(s)	seeded	0	2008
SACLA	Japan	8.0	U	750	0.08 -0.8	60	Linac(c)	SASE, SS	0	2011
PAL-XFEL	Korea	10.0	U	1.1k	0.1-4	100	Linac (s)	SASE,SS	С	2016
DCLS	China	0.3	U	150	50-150	50	Linac (s)	seeded	С	2017
SXFEL	China	1.0	T-U	300	9(2)	10	Linac (c)	seeded	С	2017

Low Gain FEL Operational Facilities in Asia

Facility	Country	Beam energy (MeV)	Test/U ser	Wavelength (µm)	Rep. rate (Macro- pulse)	Driver	Operation mode	St	Lasing
iFEL	Japan	165/20	U	0.28-20	1-10	Linac(S)	Oscilator	0	2000
FEL-TUS	Japan	40/10	U	5-14/ 300-1000	5	Linac(S)	Oscilator	0	2000
KAERI FIR FEL	Korea	7	U	100-300	0.6-10	Microtron	Oscilator	0	1999
BFEL	China	30	U	7-19	3.125	Linac(S)	Oscilator		1993

XFEL Facilities in Asia

SACLA and PAL-XFEL Accelerators

Shanghai soft x-ray free-electron laser (SXFEL)

- An XFEL test facility, two-stage cascading seeded FELs;
- located in the SSRF campus, closing to its synchrotron;
- The SXFEL groundbreaking was made at the end of 2014, and first lasing of the SXFEL is expected in 2017.

Prototypes:

•S-band RF Gun

•C-band RF structure and pulse compressor

- •X-band deflecting structure
- •3m Undulator U20
- •Small gap vacuum chamber
- •Cavity BPM
- •Synchronizing system

Dalian Coherent Light Source (EUV-FEL)

- Seeded FEL(HGHG), 50-150nm tunable, 50Hz rep-rate.
- Full coherence, fs-ps pulse lengths, GW peak power
- Scheduled for 2012-2016, in parallel to SXFEL, similar technology, funded by NSFC

Future Plan: ERL Light Source Project at KEK

The Compact ERL (cERL) at KEK

S. Sakanaka et al., IPAC2015, TUBC1.

Picture of the cERL

Inverse Compton Scattering γ/x-ray Sources in Asia

	Inst.	Acc. type	E-beam	Laser	X-ray	Appl.& Others
1	SHI (JPN)	S-band, SW	38MeV, 0,8nC, 3ps, 30um	200mJ, 50fs, 800nm	165deg.:33.7keV, 2x10 ⁶ ph/p,3ps, 6%fluct., 10Hz.	Imaging
2	JAEA (JPN)	Microtron	150MeV, 60pC/pulse,	Nd:YAG 840mJ,23ns,	~400keV, 45±20ph/pulse, 10ps.	Imaging
3	KEK – STF	L-band, SRF	23MeV, 0.9nC, 15ps, 150/train,	4mirrors OC: 0.3mJ,	8~9keV, 8.2x10 ⁶ ph/s, 8% bandwidth(FWHM)	Imaging
4	KEK- LUCX	S-band, TW	43MeV, 0.5nC, 100/train	2-mirror OC, 110 uJ/pulse	10⁴ph./train	
5	THU- TTX-1	S-band, TW	46.7MeV,0.2nC, 10Hz	300mJ/pulse, 800nm,	10 ⁶ ph./pulse, 51.7keV,	Imaging

The Scattering X-ray Signal and Background of TTX-I

Typical background and X-ray signal

Ultrafast electron diffraction and microscopy

 ✓ The structural dynamics of the sample is initiated by an ultrafast laser and then probed by an ultrafast electron beam

✓ Compact

✓ Complementary to XFEL

Institute	E (MeV)	Technology	Test/User facility
Korea Atomic Energy Research Institute	~3	PC gun	User
Osaka University	~3	PC gun	User
Peking University	3~4	DC-SRF	Test
Shanghai Jiao Tong University	2~5	PC gun	User
Tsinghua University	~3	PC gun	Test

Ultrafast electron diffraction and microscopy

UED/UEM facility under construction at Shanghai Jiao Tong University (\$15 M, 2014-2018)

- 1. Femtosecond laser
- 2. High rep-rate rf source
- 3. High rep-rate rf gun
- 4. Advanced sample chamber
- 5. Superconducting solenoid (UEM)
- 6. Advanced detection system

Colliders, Proton & Heavy Ion Facilities

Colliders

- BEPC-II: Beijing Electron Positron Collider
- SuperKEKB, Super KEK B-Factory
- ILC: International Linear Collider
- CEPC: Circular Electron Positron Collider
BEPC-II

BEPCII, the major upgrades of BEPC (Beijing Electron Positron Collider), is a double-ring e and e+ factory-like collider, working at the beam energy range from 1 GeV to 2.1 GeV and being optimized at 1.89 GeV with the design luminosity of 1×10^{33} cm⁻²s⁻¹. It has been in operation since Sept. 2009.

Parameters	BER/BPR	BSR
Beam energy (GeV)	1.89	2.5
Circumference (m)	237.53	241.13
Beam current (A)	0.91	0.25
Bunch current (mA) / No.	9.8 / 93	~1 / 160 - 300
Natural bunch length (mm)	13.6	12.0
RF frequency (MHz)	499.8	499.8
Harmonic number	396	402
Emittance (x/y) (nm·rad)	144/2.2	140
β function at IP (x/y) (m)	1.0/0.015	10.0/10.0
Crossing angle (mrad)	±11	0
Tune (x/y/s)	6.54/5.59/0.034	7.28/5.18/0.036
Momentum compaction	0.024	0.016
Energy spread	5.16×10 ⁻⁴	6.67×10 ⁻⁴
Natural chromaticity (x/y)	-10.8/-20.8	-9.0/-8.9
Luminosity (cm ⁻² s ⁻¹)	1×10 ³³	

SuperKEKB

KEKB has the highest peak luminosity in the world, 2×10^{34} cm⁻²s⁻¹. KEKB has been in operation until 2010. Afterward, upgrading of KEKB has been initiated toward SuperKEKB. The target luminosity is 8×10^{35} cm⁻²s⁻¹, which is 40 times higher than that of KEKB.

	KEKB		Super	SuperKEKB	
	(operation)	ation)	(de	(design)	
	LER	HER	LER	HER	
ε_x	18	24	3.2	5.0	nm
ε_y	151	151	8.6	13.5	pm
$\varepsilon_y/\varepsilon_x$	0.84	0.63	0.27	0.25	%
β_x^*	12000	12000	32	25	mm
β_{y}^{*}	5.9	5.9	0.27	0.31	mm
σ_x^*	147	170	10	11	μm
σ_x^* (eff.) ^{*1}	-	-	249	207	μm
σ_v^*	944	944	48	56	nm
$\sigma^{*}_{x'}$	122	141	316	447	μ rad
$\sigma_{y'}^{\hat{*}}$	0.12	0.14	0.18	0.21	mrad
ξx	.127	.102	.0028	.0012	
ξ_y	.129	.090	.0881	0.0807	

^{*1} σ_x^* (eff.) is an effective horizontal beam size defined as $\sigma_z \sin \phi$, where σ_z and ϕ denote a bunch length and a half crossing angle, respectively.

higher beam currents

Desig	n parameters	5		
Parameter	Value	Damp	oing Ring	
Energy	1.1 GeV			e+ b
Bunches	2 x 2		× +	2期工事 1期工事
Circumference	135.5 m			A
H. damping	10.87 ms			
Ext. emittance (H/V)	42.5/3.15 nm			
Max. current	70.8 mA			
DR tunnerl construct	tion		DR tunnel and pulloings	
Dec. 2012	InstallaComm	ation and startup of issioning of DR will s	DR components ongoir start in winter JFY2016.	ıg.
Tunnel and buildings completed. Installation of magnets ongoing.Antechamber-type beam pipe for DR				
Mar. 2013				

<image>

21111 11114

High-power test done.

RF cavity for DR:

5

Linac Sector-3

beam

×

Der

B

Design parameters		
Parameter	Value	
Energy	1.1 GeV	
Bunches	2 x 2	
Circumference	135.5 m	
H. damping	10.87 ms	
Ext. emittance (H/V)	42.5/3.15 nm	
Max. current	70.8 mA	

Jun. 2012

Installation and startup of DR components ongoing.
 Commissioning of DR will start in winter JFY2016.

Tunnel and buildings completed. Installation of magnets ongoing.

Antechamber-type beam pipe for DR

Design parameters		
Parameter	Value	
Energy	1.1 GeV	
Bunches	2 x 2	
Circumference	135.5 m	
H. damping	10.87 ms	
Ext. emittance (H/V)	42.5/3.15 nm	
Max. current	70.8 mA	

Jun. 2012

Installation and startup of DR components ongoing.
 Commissioning of DR will start in winter JFY2016.

Tunnel and buildings completed. Installation of magnets ongoing.

Antechamber-type beam pipe for DR

SuperKEKB master schedule

ILC

International Linear Collider

The next major accelerator project is driven by truly international efforts Superconducting linear accelerator of ~30km length to be constructed underground in lwate, Japan

> ILC will address fundamental questions beyond the Standard Model

ILC Accelerator in TDR

ILC Site Candidate Location in Japan: Kitakami

STF2:SRF Beam Accelerator Facility

High Gradient (31.5 MV/m) = > Demonstration of ILC-size cryomodule

Beam acceleration w/ capture CM (40 MV), w/ 6.7 mA, 1 ms, in 2012

Beam acceleration w/ CM1 expected in 2016, after power dist. system installed in 2015

CEPC: Circular Electron Positron Collider

- CEPC-SppC configuration was proposed in Sep. 2012 by Institute of High Energy Physics (IHEP), CAS, Beijing.
- The candidate location is Qinhuangdao(秦皇岛), with great geological conditions and strong support from the local municipal government. It is close to Beijing within 3 hours dive.
- A total budget cap is preliminarily set to be about 20B RMB.

CEPC Accelerator and parameters

Parameter	Unit	Value	Parameter	Unit	Value
Beam energy [E]	GeV	120	Circumference [C]	m	54752
Number of IP[N _{IP}]		2	SR loss/turn [U₀]	GeV	3.11
Bunch number/beam[n _B]		50	Bunch population [Ne]		3.79E+11
SR power/beam [P]	MW	51.7	Beam current [I]	mA	16.6
Bending radius [p]	m	6094	momentum compaction factor $[\alpha_p]$		3.36E-05
Revolution period [T ₀]	s	1.83E-04	Revolution frequency [f ₀]	Hz	5475.46
emittance (x/y)	nm	6.12/0.018	β _{IP} (x/y)	mm	800/1.2
Transverse size (x/y)	μm	69.97/0.15	ξ _{x,y} /IP		0.118/0.083
Beam length SR [$\sigma_{s.SR}$]	mm	2.14	Beam length total [$\sigma_{s.tot}$]	mm	2.65
Lifetime due to Beamstrahlung (simulation)	min	47	lifetime due to radiative Bhabha scattering $[\tau_L]$	min	52
RF voltage [V _{rf}]	GV	6.87	RF frequency [f _{rf}]	MHz	650
Harmonic number [h]		118800	Synchrotron oscillation tune $[v_s]$		0.18
Energy acceptance RF [h]	%	5.99	Damping partition number [Jg]		2
Energy spread SR [$\sigma_{8.SR}$]	%	0.132	Energy spread BS [σ _{8.BS}]	%	0.119
Energy spread total [σ _{δ.tot}]	%	0.163	nγ		0.23
Transverse damping time [n _x]	turns	78	Longitudinal damping time [n _s]	turns	39
Hourglass factor	Fh	0.658	Luminosity /IP[L]	cm ⁻² s ⁻¹	2.04E+34

CEPC

Pre-study, R&D and preparation work

- Pre-CDR in March 2015
- R&D: 2016-2020
- Engineering Design: 2015-2020

Construction: 2021-2027

Data taking: 2028-2035

SppC

Pre-study, R&D and preparation work

- Pre-study: 2013-2020
- R&D: 2020-2030
- Engineering Design: 2030-2035
- Construction: 2035-2042
- Data taking: 2042-

Proton and Heavy Ion Facilities-- Synchrotron

Name	City	Type of	Energy	Current	Opera.
		particle	(MeV)	(uA)	Year
HIRFL-	Lanzhou	Heavy ion	10-100/u	30~1500	2007
CSRm					
HIRFL-	Lanzhou	Heavy ion	100-450/u	200 or	2007
CSRe				Radioactive	
				Beam	
J-PARC-	Tsukuba	р	3000	50000	2008
RCS					
JPARC-	Tsukuba	р	30000 (currently)	220E ⁶ peak	2008
MR			50000 (design)	12~14E ⁶ ave.	

Proton and Heavy Ion Facilities-- Linac

Name	City	Type of	Energy	Current	Operation
		particle	(MeV)	(emA)	Year
Heavy Ion-	Lanzhou	Heavy ion		0.5	2014
RFQ			0.143		
J-PARC	Tsukuba	р	400	30	2008
KOMAC	Daejeon	р	100	20	2013
IUAC	New Delhi	Heavy ion	160-270	several hundreds of uA	2007

J-PARC --KEK(Japan Proton Accelerator Research Complex)

Main Synchrotron Ring (MR) (30 (50) GeV, Period: **2.6~6.0sec**, φ500m):

Linac (E:181MeV-> 400MeV (2013)

 ν -beam line (Super Conducting Mag.)

Goals at J-PARC

CSNS: China Spallation Neutron Source

Parameters

	CSNS	Upgrade
Beam power/kW	100kW	500kW
Repetition rate/Hz	25	25
Linac energy/MeV	80	250
RCS energy/GeV	1.6	1.6
Average current/µA	62.5	312.5
Target number	1	1

Commissioning schedule

IS+LEBT	Nov. 15, 2014-Dec.31, 2015
RFQ+MEBT	Feb. 15, 2015-Mar. 31, 2015
DTL1	Aug. 1, 2015-Sep. 30, 2015
L2-4+LRBT	Jul. 1, 2016-Sep. 30, 2015
RCS	Oct. 1, 2016-Jul. 31, 2017
RTBT	Aug. 1, 2017-Aug. 31, 2017
First beam on target	Aug. 1, 2017-Aug. 31, 2017
Beam power to 10kW	Aug. 1, 2017-Dec. 31,2017
To the acceptance goal	Dec. 31, 2017
Official acceptance	Mar. 2018
Beam power to 100kW	Mar.1,2018-Mar.1,2021

Campus

CSNS: Construction Status

Linac and Ring are under installation, and the frontend has finished beam commissioning.

KOMAC : Intense neutron source @KAERI

Features of KOMAC 100 MeV linac

- 50-keV Injector (Ion source + LEBT)
- 3-MeV RFQ (4-vane type)
- 20 & 100-MeV DTL
- RF Frequency : 350 MHz
- Beam Extractions at 20 or 100 MeV
- 5 Beamlines for 20 MeV & 100 MeV

Output Energy (MeV)	20	100
Max. Peak Beam Current (mA)	1~20	1~20
Max. Beam Duty (%)	24	8
Avg. Beam Current (mA)	0.1 ~ 4.8	0.1 ~ 1.6
Pulse Length (ms)	0.1 ~ 2	0.1 ~ 1.33
Max. Repetition Rate (Hz)	120	60
Max. Avg. Beam Power (kW)	96	160

KOMAC started its operation in 2013

• Two (2) beamlines are under normal operating (1 for 20 MeV, 1 for 100 MeV)

100 MeV Linac@KOMAC

CADS Proton Accelerator, China

325 MHz proton RFQ accelerator(IHEP)

Beam: <u>11mA@3.2MeV</u>, Duty cycle >90%, Transmission efficiency > 95% Average beam power>31kW

Low Beta (0.12)spoke cavity modules (IHEP)

No.	Eacc@4K [MV/m]	Q₀@7MV/ m
4#	14.6	1.2e9
6#	14.7	1.3e9
7#	13.4	6.5e8
8#	15.4	5.5e8
9#	15.9	5.9e8
11#	15.3	6.5e8
12#	13.4	1.0e9
13#	14.1	9.0e8

TCM (2 spoke 012+2 Solenoid +2BPM)
:
3.61MeV/10mA (1Hz, 130us),

CM1 (7spoke012+7 Solenoid +7BPM
) : 5MeV beam commissioning

162.5 MHz proton RFQ and HWR/CH Injector (IMP)

- July 2014, RFQ 2.1 MeV@10 mA CW proton beam achieved
- June 2015, RFQ+Cryomodule with 6 HWR cavities.
 5.2MeV/10.2 mA pulsed proton beam achieved.
 5.2MeV/2.7 mA CW proton beam accelerated.

HIRFL Facility(IMP-CAS)

Heavy Ion-RFQ (IMP-CAS)

Design ion	a- ²³⁸ U ³⁴⁺		
ECR ion source			
Extraction voltage	25kV		
Mass analyzer	90° dipole		
Frequency	18GHz		
Focusing element	solenoid		
RFQ			
Туре	4-rod		
Frequency	53.667MHz		
Input energy	3.728keV/u		
Output energy	143keV/u		
Electrode voltage	70kV		
RF power	35kW		
Max.current(design)	0.5emA		
Operation mode	CW		
Length	2.52m		
Max.modulation	1.996		

Proton and Heavy Ion Facilities-- Cyclotron

Name	City	Type of particle	Energy(K-MeV)	Current (uA)	Year (finished)
VECC-VEC	Calcutta	Heavy ion	130	10	1980
HIRFL-SFC	Lanzhou	Heavy ion	10-70	15-1e	1987
HIRFL-SSC	Lanzhou	Heavy ion	100-450	3.5-0.1e	1988
RIBF-FRC	Tokyo	Heavy ion	570	<i>lfor ¹⁸O</i> 0.024 for ¹²⁴ Xe 0.0036 for ²³⁸ U	2006
RIBF-IRC	Tokyo	Heavy ion	980	<i>lfor ¹⁸O</i> 0.024 for ¹²⁴ Xe 0.0036 for ²³⁸ U	2006
RIBF-SRC	Tokyo	Heavy ion	2600	<i>lfor ¹⁸O</i> 0.024 for ¹²⁴ Xe 0.0036 for ²³⁸ U	2006
VECC-SCC	Calcutta	Heavy ion	500	0~200	2010
BRIF	Beijing	р	100	200	2014

Variable Energy Cyclotron Centre (VECC)- India

room temperature Cyclotron K =130 Ion type: Heavy ion Superconducting cyclotron K =500 Ion type: Heavy ion

RIKEN – RIBF (Radioactive Isotope Beam Facility)

	fRC	IRC	SRC
K-number (MeV)	570	980	2600
Number of sectors	4	4	6
Velocity gain	2.1	1.5	1.5
Number of trim coils	10	20	4+22
Number of rf resonators	2+FT	2+FT	4+FT
Rf frequency (MHz)	54.75	18-38	18-38

BRIF: CYCIAE-100MeV Cyclotron, 2014-CIAE

Main parameters				
Energy	75~100MeV			
Beam Current	200~500uA			
Frequency	43~45MHz			
RF Power	2×100kW			

Development of SC Linac of IUAC, India

Nuclear Physics Material Science Biophysics Ion bean analysis etc.

Table 1: Beams accelerated through Linac					
Beam species	Pelletron energy (MeV)	ΔT @ Linac entrance (ps)	Egain from LINAC (MeV)	Total energy (MeV)	
⁴⁸ Ti ¹⁴⁺	162	~204	108	270	
	162	~185	95	257	
³⁰ Si ¹²⁺	112	~132	84	196	
²⁸ Si ¹¹⁺	124	~143	<mark>6</mark> 5	189	
²⁸ Si ⁸⁺	110	~225	50	160	
³⁰ Si ¹²⁺	100	~260	80	180	

Rare Isotope Science Project (RISP) at Daejeon

 $(2011.\ 12 \sim 2021.12)$

- High Intensity RI beams by ISOL and IFF
 - 70 kW ISOL from direct fission of ²³⁸U by 70 MeV, 1 mA protons
 - 400 kW IF by 200 MeV/u, 8 pμA ²³⁸U
- High energy, high intensity & high quality neutron-rich RI beam
 - 132 Sn with ~250 MeV/u, up to $9x10^8$ pps
- More exotic RI beams by ISOL+IF+ISOL(trap)
- Simultaneous operation of ISOL and IFF for the maximum use of the facility

	Driver Linac				Post Acc.	Cyclotron
Particle	H+	O ⁺⁸	Xe ⁺⁵⁴	U ⁺⁷⁹	RI beam	proton
Beam energy (MeV/u)	600	320	251	200	18.5	70
Beam current (pµA)	660	78	11	8.3	_	1000
Power on target (kW)	> 400	400	400	400	-	70

Facility Layout

Status of Prototyping

HWR & Cryomodule

SSR & Cryomodule

HIAF(Heavy Ion Accelerator Facility) -IMP @Huizhou Guangdong, P: 12GeV ²³⁸U⁹²⁺: 238GeV

CIADS-IMP/IHEP/CIAE @ Huizhou Guangdong

Proton Linac System at RRCAT & BARC

- Proton linac for Accelerator Driven System (ADS)
- Injector linac for Spallation ۲ neutron Source (SNS)

Typical pulse duration : 500 μ s - 1ms, Peak current : 20 - 50 mA
RIB--VECC—India

Summary

- Accelerator developments are very strong in Asia, from colliders, light sources, to proton and heavy ion facilities;
- There are a dozen accelerator projects under construction and R&Ds at national labs and universities.
- New projects and proposals are still emerging;

Thank you for your attention!

It is impossible to make a complete and precise survey within a short time, and it is no space for me to include the accelerators for medical applications and mass spectrum analysis. Please let me know if there is something not updated or incorrect.