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Electrostatic finite-element code

to study geometrical nonlinear effects of BPMs in 2D
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We have developed a 2D finite FEM-based software for Matlab to study
non-resonant effects in BPMs of arbitrary geometry, in particular the geometric
nonlinearities. The developed code called BpmLab utilizes an open-source
tetrahedral mesh generator DistMesh, combined with a short implementation of

FEM with linear basis functions to find the electrostatic field distribution for
boundary electric potential excitation.

Geometry

done by signed distance functions: they
give the shortest distance from every
node to the boundary of the domain:
the sign of the metric is negative inside
the region and positive outside.

Distance metric

Fig. 1 shows the initial node disribution

of sample shapes based on their
distance metrcs.
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The BPM response as a function of beam position

optimization.

is calculated in a single simulation

for all beam positions using the potential ratios, according to the Green's reciprocity
theorem. The code offers ways to correct the geometrical nonlinear distortion, either
by polynomials or by direct inversion of the electrode signals through numerical

The results are tested and benchmarked on the showcase pickup labeled pilot-BPM.

Meshing

by DistMesh: a free Matlab code for generating
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Uniform mesh of
the pilot-BPM
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Uniform mesh of the ALBA Storage Ring BPM:
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Fig. 1. Modeling the geometry with distance metrics, which show

5074 nodes
100351 triangles

Non-niform mesh of the ALBA BPM:
4558 nodes,
8409 triangles [~
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which nodes to include (blue) or exclude (red) from the final mesh.
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FEM Solver

A short Laplace's equation solver in  circle s, with radius & = 0.5:
2D with mixed (Dirichlet + Neumann) {qb +hyy =4, 224y <R
boundary conditions for unstruc- Y%

. . . Solution: ¢(x,y) = R - x* - y2
tured grids with linear elements
using the standard Galerkin discreti-

zation [2].

The FEM solver calculates the electro- {qs T
static potential in each mesh node
based on the boundary conditions.
Its convergence is tested on analytic
shapes with exact solutions, Fig 2.

—V2p =2x(1 —x) +2y(I - y), (x,y) € $H\QS,
=0,
Solution: ¢(x,y) = xy(I — x)(I —y)

Reciprocity

According to Green's reciprocity theorem (GRT), all beam
positions are found in a single calculation [3]:

One electrode is excited to 1 volt, the results are mirrored 3x
times (Fig. 3). The DOS expressions combine 4x results and
normalized H and V response characteristic in the mesh nodes
is obtained (Fig. 4). Figure 5 shows a calibtared response map.
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Fig. 2. Comparison between FEM solution (right) and
the exact one. The difference is below 1T mV (left).
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The normalized beam position characteristic in the XY plane, based on 4 pickup electrodes, is described
in general by orthogonal and diagonal Difference-Over-Sum (DOS) treatments:

2 1

enchmarking vs. other methods

The pilot-BPM geometry was simulated by each of the following methods. Differences between position maps,
treated by DOS (4x planes), are shown with respect to BomLab simulation in Fig 5.

Wall Current Model

Analytic integration of the wall current distribution
induced on an electrode due to a line-charge [4].
Difference below 30 um around most of the map:

-

Boundary Element Method

20 um around most of the map:

difference wrt. BbmLab:

Numerical solution of the 2D electrostatic problem of = simulated in the 3D
finding the induced charge on the boundary of the  Electrostatic solver of CST
domain containing a line-charge [5]. Difference below with  under 10 um
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CST: Electrostatic & Wakefield solvers

Potential excitation of the
right electrode to 1V is

Time domain wakefield
mapping in 3D by a single
transient bunch in CST
Particle  Studio (225
simulations in 5h) with
under 30 um difference:
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