Design of Coded Aperture Optical Elements for SuperKEKB X-ray Beam Size Monitors

E.Mulyani ¹, J.W.Flanagan ^{1,2}

¹ Dept. Accelerator Science, School of High Energy Accelerator Science, SOKENDAI, Tsukuba, Ibaraki, JAPAN
² Accelerator Laboratory, KEK, Tsukuba, Ibaraki, JAPAN

Introduction

Precision measurement of vertical bunch has an important role in the design and operation of the electron storage rings (SuperKEKB, e+ e- collider).

For bunch by bunch beam profile monitoring with high resolution and fast response, we are developing an x-ray imaging based on coded aperture (CA)

Fig 2. Schematic of x-ray beam size monitor

Fig 1. SuperKEKB layout (IPAC2015, Miura T

What and Why CA?

- Consists of pseudorandom array of pinholes (aperture) that projected a mosaic of pinholes camera onto a detector, the image is then decoded using the known mask pattern to reconstruct the original image.
- It offers greater open aperture than a single pinhole, for greater photon throughput and better statistical resolution for single shot measurement.

Aim

To design coded aperture optical elements for SuperKEKB that provide 1 - 2 micron resolution for 10 - 25 micron vertical beam sizes.

Simulation Methods

<u> </u>			
Parameter	LER	HER	UNIT
Beam Energy	4	7	GeV
Source bend radius (ρ)	31.74	106	m
Distance form source to mask (b)	9.43	10.33	m
Distance form mask to detector (f)	31.38	32.35	m
Au thickness	20	20	μm
Total Be filter thickness	0.7	16.2	mm
Diamond thickness	600	600	μm
Airgap	10	10	cm

What the detector sees

$$\begin{bmatrix} A_{\sigma} \\ A_{\pi} \end{bmatrix} = \frac{\sqrt{3}}{2\pi} \gamma \frac{\omega}{\omega_{c}} (1 + X^{2}) - i \begin{bmatrix} K_{2/3}(\eta) \\ iX \\ \sqrt{1 + X^{2}} K_{1/3}(\eta) \end{bmatrix}$$
 Source SR wavefront amplitudes

To calculate the wavefront amplitude from each source point for each pixel in detector, converted to detected flux (Kirchhoff integral over mask)

$$A_{\sigma,\pi} \text{ (detector)} = \frac{iA_{\sigma,\pi} \text{ (source)}}{\lambda} \times \int_{mask} \frac{t(y_m)}{r_1 r_2} e^{i\frac{2\pi}{\lambda}(r_1 + r_2)} \left(\frac{\cos\theta_1 + \cos\theta_2}{2}\right) dy_m$$

$$\frac{\left(\frac{\chi^{2}}{v} = \frac{1}{N-n-1} \sum_{i=1}^{N} \frac{\left[s_{i}' - s_{i}\right]}{\sigma_{i}^{2}}\right)}{N-n-1}$$

Degree of freedom χ^2 , from difference between two images/signal height for each channel.

The resolution is defined as the change in beam size, where the $\chi^2 per \ degree \ of \ freedom \ is \ one.$

Mask Design and Results

The detector is 128 channels of silicon with 2 mm of sensing depth, and a pixel pitch of 50 μ m.

Figs 5, 6 and 7. Simulated detector image show a number of photon/pixel for various beam sizes at HER with pinhole, CA1 and CA2 at 1 mA

Figs 8 and 9. Resolution of vertical beam sizes in HER and LER at 1 mA

- We calculated the resolutions for all optical elements with the number of photons (for hole regions):
- L E R = 1942.96 photon/turn/mA/bunch
- H E R = 3 3 4 1 . 6 3 photon/turn/mA/bunch
- For CA1 at 10-25 μm beam sizes, resolution are estimated 1.25-2.25 μm (for both rings)

- 1. Pinhole size was optimized by simulating detector images for a point source in both rings, with various pinhole (slit) sizes. The minimum widths PRFs were found to be the same (within 1 μ m) at 33 μ m for both rings, so this size pinhole was taken as the optimum for both rings.
- **2**. Pairs of 33 μ m slits were simulated, with varying separations between the pairs.
- **3.** A series of multi-slit patterns were devised by hand, incorporating a suitable range of slit separations to cover the dynamic range of interest, with emphasis on covering the smallest beam sizes.

Summary

- The CA1 elements that we have designed for use at SuperKEKB are estimated to provide 1.25-2.25 microns resolution for 10-25 microns of vertical beam sizes at 1 mA bunches.
- For larger beam sizes (> 30 μ m), CA2 mask is better than CA1.
- •The pinhole and CA masks are in fabrication for use at SuperKEKB. The study of the resolutions available with these mask patterns will be refined to incorporate noise and low-count (Poisson) statistics, and compared with data taken following beam commissioning in Spring 2016.

contact persons: mulyani@post.kek.jp john.flanagan@kek.jp