Author: Gensch, M.
Paper Title Page
MOCLA03
Fully Intensity and Timing Jitter Compensated Ultra-Fast Experiments at Accelerator-Driven Photonsources at High Repetition Rates  
 
  • S. Kovalev, M. Gensch, B.W. Green
    HZDR, Dresden, Germany
  • A.S. Fisher
    SLAC, Menlo Park, California, USA
  • T. Golz, N. Stojanovic
    DESY, Hamburg, Germany
  • T. Kampfrath
    FHI, Berlin, Germany
 
  Funding: European Union through project EUCALL
Timing jitter and power instabilities are crucial parameters which greatly reduce the applicability of accelerator driven light sources for time-resolved experiments. In this contribution we present a technique that allows achieving few 10 fs time-resolution in experiments operating at cw repetition rates of up to 100 kHz by employing high repetition rate data acquisition. The method employs a fs-level arrival time monitor based on electro-optic sampling* ** of residual pulses from a coherent diffraction radiator and a fast THz detector allowing for pulse to pulse detection of arrival time and pump intensity. The monitor can operate at high repetition rates cw (presently up to a few 100 kHz) and low electron bunch charges (sub pC). The prototype device has been tested at the quasi CW SRF accelerator (ELBE) by performing an ultra-fast THz driven magnetization dynamics experiment***. Our method has high potential to provide few fs level timing on next generation large scale X-ray photon sources based on high repetition rate electron accelerators such as LCLSII. A demonstrator aiming at operation up to 4.7 MHz is under development for the European X-FEL.
* Z. Jiang, X. C. Zhang, IEEE Journal of Quantum Electronics, 36, 1214, 2000
** I. Wilke et al., Phys. Rev. Lett., 88, 124801, 2002.
*** S. Kovalev et. al., under review (2015).
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB009 Jitter Analysis at CW Repetition Rate With Large Spectral Range and High Resolution 43
 
  • M. Kuntzsch, M. Gensch, U. Lehnert, P. Michel, R. Schurig, J. Teichert
    HZDR, Dresden, Germany
 
  At the superconducting CW accelerator ELBE electron bunch diagnostics has been installed recently, enabling the investigation of bunch arrival-time jitter and electron energy fluctuations for varying bunch compression states. Using these diagnostic systems, a comprehensive investigation has been performed that reveals the influence of the bunch compression to spectral noise components up to a frequency of 100 kHz (i.e. 200 kHz bunch repetition rate). The transformation of arrival-time jitter into energy jitter and vice versa can be observed. The perfomances of a DC thermionic and a SRF photoinjector at the CW- SRF Linac ELBE are compared and an interpretation for different noise components is presented.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)