The Design of BPM Electronics for CSNS RCS

W. Lu, Y.B. Zhao, X.C. TIAN, H.Y. Sheng, J.W. ZHAO Institute of High Energy Physics, 100049, Beijing, China Tel: +86-01-88235826 Email: luw@ihep.ac.cn

ABSTRACT

The challenge of designing the CSNS RCS BPM electronics is to acquire and process the signal with large dynamic range (5.8mv~32V) and changing width (80ns to 500ns). The analog circuit described in this paper, which is constructed of single-stage amplifier and analog switch, can cover the pick-up signal with large dynamic range. Because of the minimum bunch length (80ns) and the requirement of position resolution, a 14 bit 250MHz ADC is adopted to digitalize the signal. Besides, the algorithm developed in FPGA is able to make Bunch-by-Bunch position calculation and Closed Orbit position calculation in real time. In addition, some preliminary test results will be presented and discussed, which show that the resolution of Bunch-by-Bunch position is 0.8mm when the input signal is 10mV and the resolution of Closed Orbit position is 50µm.

2.2 the design of analog circuit

- The circuit consists of three stage amplifier.
- The first stage amp. has a gain of 0.5 to receive all pick-up signal.
- The second stage amp. is variable gain amplifier(VGA), with gain varying from *16 to 1/16.
- The third stage amp. convert the signal to differential signal to provide to ADC.
- LPF is placed between the second and the third stage, with bandwidth 30MHz.

1, CSNS RCS BPM PICK-UP SIGNAL

- CSNS RCS BPM system adopt the linear-cut pick-up electrode.
- The capacitor C is 366pF, and the load is 50Ω. The equivalent circuit is show in figure 1.
- The pick-up signal in injection and in extraction stage is showed in figure 2.

Features of pick-up signal:

5.8mV~32V(75dB) Dynamic range: Length of signal: 80ns~500ns Analog bandwidth: 30MHz **Revolution frequency:** 1MHz~2.4MHz

Fig.5: Structure of analog circuit

Fig.6: Structure of the second stage amplifier

- For the second stage, it is challengeable to implement gain changing from 16 to 1/16.
- We propose a structure showed in Fig. 6. The resistors has a relationship: R1=R4, R2=R3, R2=7.5*R1. Gain can change from 16 to 1/16.
- Switches are connected to inverting input of the amp., so the "Off Isolation" performance is not crucial. 30MHz is OK!

3, SIGNAL PROCESSING

 Digital signal is aligned to each other.

Fig.2-2: Pick-up signal in extraction stage

2, DESIGN OF ELECTRONICS

2.1 Architecture of electronics

- Using digital Δ/Σ method to process the pick-up signal. The four pick-up signal is processed and digitalized individually.
- Bunch-by-bunch position and Closed Orbit position is calculated in FPGA.
- DDR2 for storage.
- CPLD and Flash to implement online configuration.
- VME bus for transportation and configuration.
- External trigger, external clock. Can output beam bunch

- Bunch-by-bunch and COD position is calculated in real time.
- The bunch-by-bunch position is sent to DDR2 for storage, and the COD position is sent out through VME bus.
- Waveform recording & Auto Gain Control.

Fig.7: The architecture of the firmware in FPGA

50um@10mV

Fig.3: Architecture of CSNS RCS BPM electronics

Fig.4: The PCB board

Fig.8: Bunch-by-bunch position resolution

Fig.9: Closed Orbit position resolution

- Bunch-by-bunch position resolution: 0.9mm@10mV
- Closed Orbit position resolution:
- Primary test @ laboratory

CONCLUSION

4, TEST

- CSNS RCS BPM electronics implemented by Δ/Σ method; lacksquare
- Propose a VGA circuit that can process the pick-up signal with dynamic range of 75dB;
- Bunch-by-bunch resolution: 0.9mm@10mV
- COD resolution:
- 50um@10mV