

THE NEW GANIL BEAMS: COMMISSIONING OF SPIRAL2 ACCELERATOR AND RESENT DEVELOPMENTS

H. Franberg Delahaye GANIL

H. Franberg-Delahaye

Outline of my talk

- GANIL
- SC-LINAC
- CYCLOTRONS
- NEXT STEPS FOR GANIL

A/Q = 7

A/Q = 2 & 3

SC LINAC

A brief history of GANIL

- 1976 Creation of GANIL (Grand Accélérateur national d'ions lourds)
- 1982 first extracted 40Ar16+ beam SSC
- 1983 First experiment
- 1990 Installation of Wien filter
- 1992 New 14 GHz ECR ion source 100 kV: High intensity adaptation of the beam lines THI : Beam diagnostics, Beam loss monitoring, beam strippers, supervision of our power supplies for the electric and magnet devices, thermal shielding, radiation protection, New rebunche between the two SSC.
- 2001 SPIRAL1 ISOL facility for exotic beams
- 2006 SPIRAL2 Project signature of convention for construction
- 2007 Upgade to high intensity framentation target LISE / CLIM ?
- 2016 SPIRAL2 ESFRI Landmark
- 2018 SPIRAL1 V2
- 2019 Start of the commissioning of SPIRAL2
- 2020 First neutron beams
- 2021 First NFS experiments (Neutron For Science)
- **2023** S3

2026 - DESIR

Some numbers

- 230 permanent staff members (CEA and CNRS researchers, engineers, technicians)
- 40 temporary staff (15 PhD, 5 postdocs)
- + CIMAP = 24 permanent staff + 15 PhD + 8 postdocs
- An international scientific community of ≈ 1000 members

GANIL: a multidisciplinary and multi-users laboratory

Nuclear Physics@GANIL: study of exotic nuclei

Main questions to be answered :

- What are the limits of existence of nuclei ?
- What are the underlying fundamental interactions ?
- How regular patterns emerge in the intrinsic structure of complex many body nuclei ?

Nuclear Physics

Nuclear Astrohysics

Astrochemistry

Materials under irradiation

Nanostructuration

Radiobiology

GANIL: a multidisciplinary and multi-users laboratory

2022 | Darmstadt

Nuclear Physics

Nuclear Astrohysics

Astrochemistry

Materials under irradiation

Nanostructuration

Radiobiology

Stable and radioactive beam production

- Injectors:
 - 2 ECR4-4M
 - Source Deutons/Protons
 - Source Phoenix V3
- Radioactive ion beams production
 - SPIRAL 1
 - FEBIAD ion source
 - NanoGAN ECR ion souce
 - Surface ion source
 - Thin targets
 - Thick targets
 - Charge breeder ECR
 - Fragmentation target LISE
 - Neutron converter
- Off line installation
 - GTS ECR ion source
 - Off-line target and ion souce + lasers
 - Off-line oven laboratory

GANIL Cyclotrons and experimental equipment

Beams : ¹²C to U
Energy : from <1
MeV up to
95MeV/nucleon
Up to 4
experiments in
parallel

SPIRAL2 and the experimental equipment

33 MeV protons 40 MeV deutons <14,5 MeV/A heavy ions

•1 experiment at the time

SC-LINAC

GANIL-SPIRAL 2

Power up of SPIRAL 2

- 1. SPIRAL2 status
- 2. Main commissioning results
- 3. Linac validation
- 4. Conclusions

SPIRAL2 status

July 8th , 2019 : Administrative authorization to operate SPIRAL2

Built by several French Labs

Collaboration with International labs

BARC (India), INFN (Italia) IFIN-HH (Romania), IFJ-PAN (Poland) SOREQ (Israel), INRNE-BAS (Bulgaria)

Particles	H⁺	D+	ions	Heavy ions
A/Q	1	2	3	7
Max I (mA)	5	5	1	1
Max energy (MeV/A)	33	20	14	8.5
Max beam power (kW)	165	200	44	51

A versatile machine to provide high intensity beams

SPIRAL2 timeline

Main commissioning results 1/5

RFQ transmission

2022 | Darmstad

- 100% transmission was obtained for 5 mA H⁺, 1 mA ⁴He²+ and 0.6 mA ¹⁸O⁶⁺ pulsed beam and for a 25 µA ⁴⁰Ca¹⁴⁺ beam in CW mode.
- CW operation of the 640 μ A ¹⁸O⁶⁺ beam. Beginning with 105 kV and finishing with 114 $_{\nu V}$

Main commissioning results 2/5

Rebuncher tuning method

2. Manual phase-scan measurement

 $\delta \phi = \phi_{RN}^{OFF} - \phi_{RN}^{ON}$

Phase scan $\delta \phi = f(\phi_R)$

Advanced method 2021

Good agreement between simulations and measurements

Main commissioning results 3/5 MEBT transverse emittance

17

Main commissioning results 4/5 Single bunch selector • Required for Physics (Time of Flight), and HEBT tuning (limitation of

- power deposition) => From 1/100 to 1/10000 bunch selection.
- Separation and injection and transport have been validated at all intensities (5mA, 1mA, 0.2mA) in pulsed and CW mode.

Main commissioning results 5/5

Energy measurement

- The tuning to any energy in the range 10-33 MeV for proton or 10-40MeV for helium/deuteron takes about 2h.
- The final energy shows a very small error.

Tuning with advanced method

LINAC validation

- SC LINAC proton beam transmission @16 kW.
 Demonstration of 165 kW
- BLMs measurement confirm losses below 1W/m.
- Pressure variation measurement is a good probe for the low energy section of the linac.
- Linac transmission is 100% within diagnostic precision.
- Good agreement between simulations and measurements.
- Actions taken to reduce losses were validated.

2000000 3E-08 3 ---- 2 kW LINB LINA 1800000 🗕 2 kW -Thresholds 2.5E-08 2.5 1600000 ---- 10 kW LINB 1400000 LINA LHE ar) 2E-08 2 1200000 S 1000000 ន្ល 1.5 800000 res 1E-08 600000 400000 0.5 5E-09 200000 B-BLM06 BLM01 BLM02 BLM03 BLM04 -BLM05 -BLM07 -BLM11 1-BLM12 :1-BLM13 BLM11 -BLM11 A-BLM05 BLM09 -BLM10 BLM02 BLM03 BLM05 E1-BLM13 BUM08 -BLM06 BLM11 BLM12 BLM06 BLM07 E1-BLM12 -BLM1 A-BLM0 BLMO HE2-BLM11 BLMO BLM0 BLMO BLMO -BLM1 BLMO -BLMG INA-SC06 NA-SC10 JA-SC12 LINA-SC02 INA-SC03 INA-SC07 INA-SC11 B-SC02 SCO5 SC08 SC01 SC03 -SCO6 INA-SC04 -sco7

(cps/s)

Main results

laboratoire commun CEA/DRF

Power increase

MEBT-LINAC matching

- Match the MEBT beam to the linac to reduce the observed beam losses.
 - Transmission •
 - > BPMs •
 - > BLMs •

RFQ

29/06/2022

Vacuum pressure

MEBT

2022 Darmstadt

Slowly increase the beam power (first beam current, then DC).

How to match the beam if LINAC is a continuous focusing channel in x,y,z:

Power increase to 16kW

CYCLOTRONS

GANIL Cyclotrons and experimental equipment

- Beams : 12C to U
- Energy : from <1 MeV up to 95MeV/nucleon
- Up to 4 experiments in parallel

Stable ions:

2 sources d'ions ECR stables : ${}^{12}C^{4+}$ à ${}^{238}U^{34+}$, I < 10¹³ pps

2 cyclotron (K=30) : 1 per injecotr 2 cyclotrons in cascade (K=380) 1 spectrometre (α , Δ E/E = 2.10⁻³) I : 2. 10¹³ pps max ; 6 kW max

SPIRAL1 : 2001 – ISOL (ions radioactives) C – Nb target, ECR, febiad and surface ion source Charge breeder Post-acceleration and : CIME (2-25 MeV/u, separation : Δ E/E = 5.10⁻⁴) (K=265) Intensités : 5 10¹¹ pps @ 25 MeV/u max

The stable ion beams

29/06/2022

H. Franberg-Delahaye

Radioactive ion beams that can be post-accelerated

New beam stable beam in 2021 ²³²Th

New beams are developed on request:

2021: ²³²Th beam

This beam is produce from a compound of $^{\rm 232}{\rm ThF_4},$

The characterization of the compound and the tests carried out on the ECR4 ion source allow to validate this new beam, in terms of intensity, stability and charge state required for an acceleration to 6.1MeV/A.

R&D Stable beam development High temperature oven

R&D RIBs

Fusion evaporation targets

120_N

Optimisation booster de charge

R&D RIBs

Graphite oven

Transfer

Anode

Nb

tube Sliding

parts

Coil

N^{90⊧}

80

70⊨

60|

50|

40

30

20

10

Fragmentation

Ions sourter 伊日的名句

shapes (A>93)

New target material and

TISS FEBIAD

Graphite target

Graphite

container

Therma

screens

100

80

218

Primar

Recoils

Exit hole

60

Target (Thin Foil)

Catcher

Electric field

E Fragmentation

20

Electrical current

Futur at GANIL

S³

: the Super Separator Spectrometer

Fundamental research in Nuclear & Atomic physics

- High selectivity > 10¹³ beam rejection
- High efficiency 50%
- Mass resolution > 350
- Versatility : high resolution, high transmission, high beam rejection modes...
- Unique instrumentation : SIRIUS for p, a, electron and g spectroscopy, and S3-LEB with gas catcher, RFQ and MR-ToF-MS

3rd injector for SC LINAC : NewGAIN project

		HV_PF	Potential irradiation station RFQ 20 keV/A RFQ 20 keV/A RFQ N*161 N*149 N*152 N*151	beam intensities lons ¹⁸ 0 ¹⁹ F ³⁶ Ar ⁴⁰ Ar ³⁶ S ⁴⁰ Ca ⁴⁸ Ca ⁵⁸ Ni ⁸⁴ Kr ¹³⁹ Xe ²³⁸	<i>injector1</i> 2023 Intensity (рµА) Phoenix V3 RFQ A/Q≤3 80 >15 16 3.6 2.3 2.9 1.2 1.2 1.1 0.1 0.01	> NEWGAIN 2028 Intensity (pµA) Phoenix V3 RFQ A/Q≤7 * >40 70 70 70 * 10 10 10 4 10 10 7 7	 (i) ≥ 2030 Intensity (pµA) SC Ion Source RFQ A/Q≤7 375 >40 45 45 45 20 20 8 20 >10 	ijector2)			
				²³⁸ U Measu	<0.001	0.1	6	1			
	NEWGAIN NE GANIL INJECTOR White Book NEWGAIN It inter line time line										
	https://www.gai	nil-spiral2.eu/scientists/ganil-spiral-2-facilities/accelerators/ne	wgain/ 2020 2021	2022 202	3 2024 20	25 2026	2027 2028				
(NBG Study	Phase	Construc	tion Phase	first bean	n			

Acknowledgments

Thanks to A. Orduz, M. Dubois, G. Normand for slides

Thank you to the organizers to invite me for this talk and the organisation of the conference

Thank you for listening

