

15th International Conference on Heavy Ion Accelerator Technology, June '22, Darmstadt

Preparation of low-energy heavy ion beams

Zoran Andelkovic GSI / Accelerator Operations / Decelerator

Overview

Introduction ~ CRYRING @ MeV/u ~ HITRAP @ keV/u ~ Outlook

- What are "low energies"?
 - Energy down to 4 MeV/u
 - ESR (low) & CRYRING (mid)
 - Energy down to keV/u
 - CRYRING (low) & HITRAP (mid)
 - Energy below keV/u
 Precision experiments
- Ion handling changes dramatically
 - device sensitivity changes
 - intensities are reduced
 - different time scales

Different techniques & different goals

Why HCI at low energy?

Introduction ~ CRYRING @ MeV/u ~ HITRAP @ keV/u ~ Outlook

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Producing HCI @ MeV/u range F(AIR GSĬ Introduction ~ CRYRING @ MeV/u ~ HITRAP @ keV/u ~ Outlook ACC/ SSI (a low-charge IS + an accelerator facility) ~ 400 MeV/u ~ 10 keV/u decelestripper target LCI accel. ration source ~4 MeV/u ECRIS (a high charge IS + a small accelerator) ~ 10 keV/u ~ 300 keV/u low-E source storage accelerator ring

Local IS + RFQ: production limits

Introduction ~ CRYRING @ MeV/u ~ HITRAP @ keV/u ~ Outlook

Zoran Andelkovic

F(AIR

GSĬ

Ion injection at low energy

Introduction ~ CRYRING @ MeV/u ~ HITRAP @ keV/u ~ Outlook

Injection limits 2 / 300 keV/u		
Min. intensity	40 / 200 nA	
Injection efficiency	20-50 %	
Multiturn	1-5 turns	
Detection limit	ca. 10 ⁶ q	
Max. intensity	10 ⁷ / 10 ⁸ q	

Ion detection at low energy

Introduction ~ CRYRING @ MeV/u ~ HITRAP @ keV/u ~ Outlook

	LCI @ 300 keV/u	HCI @ 4 MeV/u
current	0.3 μΑ	3 μΑ
velocity β	2% c	14% c
ecool	100 V	5495 V
lifetime	10 sec	10 sec
BPM.	XV	\checkmark
Schottky	XV	\checkmark
AC Transf.	\checkmark	\checkmark
DC Transf.	X	\checkmark
IPM	X	

 \succ lifetime dominated by: e⁻ capture for HCI; stipping for LCI \rightarrow vacuum crittical

 \blacktriangleright measured pressure 5.10⁻¹¹ mbar (250°C baking + 10 ion pumps + 60 NEG pumps)

Ion storage at low energy

Introduction ~ CRYRING @ MeV/u ~ HITRAP @ keV/u ~ Outlook

laser fluorescence as a function of electron cooling al low-E

- → No other diagnostic element offers sufficient sensitivity
- a unique combination of sensitivity (1 mm, 0.1 V) and energy range (0.17 MeV/u)
- dispersive effects of the electron cooler excite synchrotron oscillations of ions

courtesy of K. Mohr, PhD Thesis, TU Darmstadt 2022

LCI in CRYRING	Energy	HCI in CRYRING	Energy
H ₂ ⁺ , D ⁺ , Li ⁺ , C ⁺ , O ²⁵⁺ , Ne ²³⁺ , ²⁴ Mg ⁺ , ²⁵ Mg ⁺ , Ar ⁺	1 keV/u (inj.) 170 keV (Mg ⁺) 20 MeV (D ⁺)	Ar ¹⁸⁺ , Ag ⁴⁶⁺ , Au ⁷⁸⁺ , Pb ⁷⁸⁸¹⁺ , U ⁹¹⁺	1 MeV/u 15 MeV/u

Producing HCI @ keV/u range FAIR GSĬ Introduction ~ CRYRING @ MeV/u ~ HITRAP @ keV/u ~ Outlook ✓ GSI (a low-charge IS + an accelerator facility) ~ 400 MeV/u ~ 10 keV/u deceler stripper target LCI accel. ation source (ring) ~4 MeV/u EBIT (a high charge IS + a beamline) ESP to tow-E ~ 4 keV/u source linear decelerator ~ 4 keV/u butter gus cell

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Zoran Andelkovic

Linear decelerator

Introduction ~ CRYRING @ MeV/u ~ HITRAP @ keV/u ~ Outlook

Requirements for ion deceleration

Introduction ~ CRYRING @ MeV/u ~ HITRAP @ keV/u ~ Outlook

Deceleration parameters		
No. ions	1-5 μA, 10 ⁶ part.	
Bunch length	0.5 μs	
Energy IH	4.024(5) MeV/u	
Energy RFQ	0.495(5) MeV/u	
Energy final	0.006(1) MeV/u	

1. transport to IH

- energy measurement
- energy adjustment at ESR
- 2. deceleration in IH
 - beam alignment
 - optimize phase, amplitude
- 3. deceleration in RFQ
 - beam alignment
 - optimize phase, amplitude
- 4. transport in LEBT
 - energy separation
 - trap, cool and eject
- 5. towards experiments

? ACC-DEC = JJD-JJA

Introduction ~ CRYRING @ MeV/u ~ HITRAP @ keV/u ~ Outlook

2022

Why is a linear decelerator NOT simply a reversed accelerator?

- the emittance grows
- narrow acceptance
- fast beams stay in
- Iow repetition rate

$$\iint \mathrm{d}x\mathrm{d}x' = \pi\epsilon \approx x \cdot x' \approx x \cdot \frac{p_x}{p_z}$$

2014

2007

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Zoran Andelkovic

Commissioning of HITRAP

Introduction ~ CRYRING @ MeV/u ~ HITRAP @ keV/u ~ Outlook

position ~ energy^{1/2} (a.u.) \blacksquare

Decelerated beam characteristics				
Central energy	5-7 keV/u			
1σ emittance	180 π mm mrad			

ca. 20 m low-energy HCI transport beamline

- energy and mass separation necessary
- focusing & diagnostic every meter
- 10⁻⁹ mbar (transport) 10⁻¹² mbar (trap)
- cooling for precision experiments

FAIR – low energy branch

Introduction ~ CRYRING @ MeV/u ~ HITRAP @ keV/u ~ Outlook

FAIR – low energy branch

Introduction ~ CRYRING @ MeV/u ~ HITRAP @ keV/u ~ Outlook

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Zoran Andelkovic

MATS-LaSpec @ FAIR

Introduction ~ CRYRING @ MeV/u ~ HITRAP @ keV/u ~ Outlook

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Zoran Andelkovic