# Alternating Phase Focusing Beam Dynamics for Drift Tube Linacs

\*S. Lauber<sup>1,2,3</sup>, M. Basten<sup>1,2</sup>, S. Yaramyshev<sup>1</sup>, W. Barth<sup>1,2,3</sup>, et al.

<sup>1</sup>GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany <sup>2</sup>HIM Helmholtz-Institut Mainz, Mainz, Germany <sup>3</sup>JGU Johannes Gutenberg-Universität, Mainz, Germany











1/24

TH3C2 – Alternating Phase Focusing Beam Dynamics for Drift Tube Linacs

#### TABLE OF CONTENTS



GSI Facility Overview and New Accelerators at GSI

**Theory of Alternating Phase Focusing** 

Applied Beam Dynamics Employing Alternating Phase Focusing







# REQUIREMENTS FOR FAIR, THE "SHE"-PROGRAM, AND MATERIAL SCIENCE AT GSI

#### Facility for Antiproton and Ion Research (FAIR) requirements:

- High beam currents
- Low repetition rate (max. 3 Hz)
- Low duty factor

#### **Super Heavy Element (SHE) requirements:**

- Relatively low beam currents
- High repetition rate (50 Hz)
- High duty factor (100 %, pulse length up to 20 ms)

#### **Material Science at GSI requirements**

- Heavy ions (m > 200)
- Beam energy (up to 10 MeV/u)
- Smoothly variable beam energy (1.5 10 MeV/u)



### A NEW ACCELERATOR FOR SHE RESEARCH



A new dedicated CW capable accelerator is under construction:

**HEImholtz Linear Accelerator** 



Common project of HIM and GSI under key support of IAP

|                      | Design Value          |  |
|----------------------|-----------------------|--|
| Mass-to-charge ratio | ≤6                    |  |
| Frequency            | 108.408 (216.816) MHz |  |
| Injection energy     | 1.4 MeV/u             |  |
| Output energy        | 3.5–7.3 MeV/u         |  |
| Output energy spread | ±3 keV/u              |  |
| Max beam current     | ≤1 mA                 |  |
| Operation mode       | continuous wave (CW)  |  |

4 / 24



TH3C2 – Alternating Phase Focusing Beam Dynamics for Drift Tube Linacs

## HELMHOLTZ LINEAR ACCELERATOR (HELIAC)







## HELMHOLTZ LINEAR ACCELERATOR (HELIAC)



6/24



TH3C2 – Alternating Phase Focusing Beam Dynamics for Drift Tube Linacs

# THEORY OF ALTERNATING PHASE FOCUSING

7 / 24



TH3C2 – Alternating Phase Focusing Beam Dynamics for Drift Tube Linacs

## DRIFT TUBE LINAC CONCEPTS

Conventional\* Heavy Ion Drift Tube Linac (DTL)

• Costly internal lenses of conventional DTLs





#### DRIFT TUBE LINAC CONCEPTS

Short Cavities with external lenses

- Improved *maintenance* and *upgradeability* due to modular design
- Possibly eased operation from additional beam diagnostic

| Longitudinal           |                 |                           |                 |  |
|------------------------|-----------------|---------------------------|-----------------|--|
| envelope               |                 |                           |                 |  |
| Transverse<br>envelope |                 |                           |                 |  |
|                        | RF acceleration | External<br>focusing lens | RF acceleration |  |



TH3C2 – Alternating Phase Focusing Beam Dynamics for Drift Tube Linacs

#### DRIFT TUBE LINAC CONCEPTS

Alternating Phase Focusing Cavity (J. H. Adlam, 1953; M. Good, 1953, Y. Fainberg 1957)

- .. Or even one RF cavity without additional focusing
- Achieved with advanced RF focusing







Alternating Phase Focusing Cavity

- Alternating focusing (F) and defocusing (D)
- Special timing of the bunch with respect to RF phase necessary



TH3C2 – Alternating Phase Focusing Beam Dynamics for Drift Tube Linacs

S. Lauber – s.lauber@gsi.de

2022 Darmstad





2022 | Darmstadt

TH3C2 – Alternating Phase Focusing Beam Dynamics for Drift Tube Linacs



#### PROS

- Embedded transverse focusing
  - Highly reduced number of control parameter (retaining tank phase & voltage)
- No additional lenses necessary
- Reduced construction and operation costs (U. Ratzinger, 1999)
- Applicable for superconducting (SC) accelerators
  - Absence of internal focusing lenses required due to SC breakdown limits
- Applicable to other resonance accelerator systems, e.g., dielectric laser acceleration (U. Niedermayer, 2018)

#### CONS

- High demand for expertise
- Modern beam dynamics solver is mandatory
- Increased R&D efforts

   No consensus on optimum design
- Tight tolerance specifications (V. Kapin, 2004)
- Low experience in operating such linacs beyond HIMAC for medical treatment (Y. Iwata, 2006)





# A NEW APF DTL FOR THE HELIAC INJECTOR LINAC



15/24

Advanced APF DTL design

as dedicated heavy ion injector linac



TH3C2 – Alternating Phase Focusing Beam Dynamics for Drift Tube Linacs



#### → from RFQ

#### to SC-HELIAC $\rightarrow$

Hybrid approach incorporating APF focusing has been designed (S. Lauber, 2022)

- Two energy-efficient Interdigital H-Mode (IH) cavities
- For increased adaptability when operation with different ions  $(A/Q \ 1 \ to \ 6)$
- Additional quadrupole triplet is installed

This solution with longer tanks is not available from conventional\* beam dynamics

• Transverse RF defocusing demands more (quadruple) lenses

Design with two separate cavities offers:

- Low emittance growth
- Reduced number of control parameters, yet flexible operation
- Cooling concept for continuous wave operation
- Additional beam diagnostics installed to the intertank

\* -30° sync phase







(units in mm)



#### BEAM DYNAMICS DESIGN OF THE ENTIRE DTL SECTION





#### BEAM DYNAMICS DESIGN OF THE ENTIRE DTL SECTION



# CONCLUSION 1/2

APF DTLs are an attractive approach to deliver high beam quality

- Effective acceleration  $\rightarrow$  compact
- Low number of control parameters
- Time-efficient commissioning
- Reliable operation
- Reduced construction costs

TH3C2 – Alternating Phase Focusing Beam Dynamics for Drift Tube Linacs





# CONCLUSION 2/2

- Reliable operation at the medical accelerator HIMAC
- Continuous wave operation with various ion species at HELIAC
  - An IH Cavity with embedded APF beam dynamics designed
  - High beam quality
  - Full transmission
- Discovery of new superheavy elements with assistance of this new linac HELIAC
  - Fundamental physis research
  - Improving quantum-chemical model of atoms
  - Promoting for advanced chemical applications and material research











# Thank you for your attention!





June 27 N - July 1 E GERMA 24