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Outline

• Introduction to UNILAC longitudinal diagnostics
– Needs and challenges
– Phase probes

• Past/Existing devices:
– Particle detectors w.r.t. RF
– Time-to-space conversion: Feshenko BSM , Gas ionization BSM

• Recent developments: Direct time-domain 
– Fast Faraday Cups (FFC)
– GHz Transition Radiation (GTR)

• Conclusion/Outlook
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UNILAC

 UNILAC: Complex set of resonators (RFQ, IH and Alvarez) with charge 
stripping sections. Two injectors HLI and HSI served by several ion sources

 Upto 50 Hz operation, several beam types and parameters available in time 
multiplexed or "parallel" operation

 Significant upgrades over the last years to achieve FAIR parameters  RFQ 
electrodes, H2 gas strippers, beam brilliance optimization

[1] W. Barth et al., High brilliance beam investigations at Universal linear accelerator, PRAB 25, 04101 (2022)
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Longitudinal diagnostics and emittance
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Rotation of the ellipse in phase space

Transfer matrix 𝑹 represents buncher, drift etc.

𝜑

𝛿 𝑠1

= 𝑹
𝜑

𝛿 𝑠0

time, length

 Energy and time of arrival with respect to RF 
form correlated distributions

 Emittance represents the area of the phase 
space ellipse  

φ

𝛿 𝛿

φ

 Multiple measurements of one 
projection enough to reconstruct 
both distributions  Tomography

 Typically only time/phase w.r.t to RF 
measured

𝑠0 𝑠1𝑹
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Devices for longitudinal diagnostics

Phase probes / Pick-ups        Residual gas ionoization monitors

Particle detectors RF deflector and dispersion with screen

Longitudinal diagnostics at UNILAC
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1 At exit of each RF tank and many for ToF
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Need for longitudinal diagnostics : Frequent changes
– Injection from HSI into the Alvarez 
– Min. energy spread while injection into the SIS-18
– Max. energy spread at stripper for countering straggling effects
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Macropulse and bunch phase w.r.t RF

6

100 μA He1+ after HLI @ 108 MHz rf

[2] R. Singh et al., Proc of IBIC 2021

FFCNth period N+1

N
N+1
N+2

Slow averaged over macropulse

Fast
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Low velocity effect on phase probes

Lorentz boost and transformation of 
time for point charge:  

   2/3 2204
)(

ctR

RetE




 



Trans. E lab.-frame of a point charge:

For β < 1  Field distribution is not the same as charge distribution. Effect visible for 
shorter bunches < few ns

[4] P. Forck: Lecture notes on beam instrumentation

Charge Dist.
𝛽 = 0.05
𝛽 = 0.15

𝑅 = 3 𝑐𝑚

R

𝜎 = 0.5 𝑛𝑠
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Signal Generation in Phase Probes (β < 1) 

Adaptation of Animation by Rhodri Jones (CERN)

The image current at the wall is    
monitored on a high frequency basis 
i.e. ac-part given by the bunched 
beam.
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Bunch structure at low Ekin

Pick-ups are used for:
 Bunch-center relative to rf for the whole macropulse
 Does not show the detailed bunch structure although directly related it 

pick-up – particle counter:
Ar1+ with 1.4 MeV/u (β = 5.5%)

pick-up – FFC:
He1+ with 1.4 MeV/u (β = 5.5%)

[4] P. Forck

Phase probe response
(𝛽 = 0.055 ) at R = 3 cm

9.25 ns
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Particle detectors as bunch shape monitor
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The time of arrival of the particle is determined relative to the accelerating rf:

Foil (130 nm): attenuation 10−9 by Rutherford scat. 
Start-detector: Thin Al foil (50 nm) for secondary e− acc. toward an MCP +50 Ω anode 
Stop-detector: Diamond detector with 1 ns pulse width 
TDC: Time relative to rf, resolution less than 25 ps

Result: Correct determination of phase spread but measured energy spread much larger than 
expected values  Foil non-uniformities, straggling on apertures. 

1.5%

[5] T. Milosic , PhD thesis TDCRF
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Bunch structure using secondary electrons

Bunch Shape Monitor (BSM): Secondary e− liberated from a wire or gas ionization 
carrying the time information.

Working principle:

 insertion of a 0.1 mm wire at  10 kV  
 immediate emission of secondary e−

(within < 10 ps)
 e− are accelerated toward an rf-deflector
 rf-deflector as ’time-to-space’ converter
 either slow shift of the phase resolution 

1o < 10 ps or "streak" the electrons 

SEM: secondary electron multiplier

Challenges: 

 Stray fields and beam fields

 Complex installation/maintenance

 Current designs: Average over several pulses

[4] P. Forck, [6] B. Zwicker , PhD thesis

[2] Comparison with FFC, R. Singh et al., Proc of IBIC 2021
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Fast Faraday Cups (FFC)

Faraday cup designed to
measure fast bunch structures
Challenges:
 Signal out-coupling should be

very well matched until high 
frequencies , fast digitizers

i.e. BW >  5𝜎𝑓 = 5

2𝜋𝜎𝑡

 Avoid measuring the self-field
of the bunch

 Suppress distortion due to e-

secondaries
 Heating/Melting of cups

12

[9] J. M. Bogaty et al. (1990): A very wide bandwidth Faraday cup suitable
for measuring GHz structure on ion beams with velocities to beta < 0.01 

About18 US patent applications!

[7] P.Strehl, Beam instrumentation and diagnostics

[8] Rawnsley et al. https://doi.org/10.1063/1.1342629

Axially coupled co-axial (AC-Co FFC) 
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Radially coupled co-axial (RC-Co FFC) 
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[11] J. –P Carniero et al., (2019)

IUAC+GSI

[3] K. Mal et al.

Minor modification of previous design

D. Sun and A. Shemyakin

 Hole from the side in a co-axial cable

 2mm distance from the ground to the central
conductor  avoid pre-field

 Large depth to width ratio to avoid emission
of secondaries

N-connector 0.8 mm hole
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RC Co-ax FFC simulations
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𝜎𝑠
2 = 𝜎𝑑

2 + 𝜎𝑏
2𝜎𝑑~0.3𝑑/𝛽𝑐

𝜎𝑑 = 78 𝑝𝑠
𝛽 = 0.06

Simulations by [13] K. Mal et al. (IUAC)

𝑑
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RC- Coax FFC validation measurements@ X2
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FFC
80 Gsa/s, 
22 GHz 

Osci

LNA, BW = 8 GHz 
0-40 dB Master-RF

40 m Co-ax

PP

X2

Ar10+, 0.6 mA, 8.6 MeV/u
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RC Coax FFC validation measurements

16

Phase =43Phase =03

Averaged along macropulse Single shot
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RC- Coax FFC SEE measurements

 Empirical estimates : 95% SEEs < 50 eV, 
Integrated SEE yield for 1-10 MeV/u p+ 
beam ~0.6-0.1 on metals. Scales with ion
charge state

 Measured bunch shape is a strong function
of DC bias voltage

17

[15] A.Reiter et al., Investigation of Cross Talk in Secondary Electron Emission Grids. Technical Note LOBI-TN-SEM-2012-001
[8] W. R. Rawnsley et al. AIP Proceedings (2000) 

Bias = - 25

V

[14] J. R. Vaughan. Secondary Emission Formulas

4 mm hole

3 ns

O6+ , 0.5 mA, 8.6 MeV/u
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RC- Coax FFC SEE measurements
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~9 mm hole-
bottom to ground

4 mm hole
 Speed of 1-10 eV electrons is 0.6- 2 mm/ ns.

 Bottom of the hole to ground distance in the
installed device is 4mm, e.g. 1 to 2 ns delay
in peak sec. e- emission

 30 V DC bias on central conductor enough to
suppress the secondaries, however risk of 
pulling secondaries generated in the blind 
hole

Simulations by K. Mal (IUAC)

3 ns

O6+ , 0.5 mA, 8.6 MeV/u
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FFC at dispersive location

19

FFC

Phase probe low velocity beam 
response (𝛽 = 0.134 ) at R = 3 cm

O6+ , 0.5 mA, 8.6 MeV/u

Phase probe remains a validation device!

PP
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FFC at dispersive location
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O6+ , 0.5 mA, 8.6 MeV/u

Careful placement of the FFC or simulation supported interpretation!

Dispersion
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Fundamentals of GHz Transition Radiation (GTR)

 an interface (z = 0) separating two
half-spaces of different media

 solving MW-equations subject to
interface conditions exhibit radiation
field

 Surface electromagnetic phenomenon
 prompt radiation

 In GHz regime, coherent transition
radiation for ~ns bunches

Transition Radiation: A charge with velocity v = const. crossing an 
interface between two media radiates. 

A potential method un-affected by pre-field and secondary
emission

21
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GTR electric field for single charge:

𝐸 =
𝑞𝛽

2𝜋𝜀0𝑐𝑅

sin 𝜃 δ
𝑅
𝑐 − 𝑡

1 − 𝛽2 cos2 𝜃
( Ƹ𝑒𝑥cos 𝜃 + Ƹ𝑒𝑧 sin 𝜃)

 Linear q and 𝛽 dependence
 Parallel polarization for normal incidence
 Good signal: 10pC charges in 100 ps (σ) 

with β=0.15  10 mV peak

Target Size: Effective trans. extent of incident
field: 𝑟eff ~ β γ λ

For targets < 𝑟eff: strong deviation from Far-Field

In practice: finite targets yield f–dependence

Formation Length:  Distance from interface to reach
Far-Field distribution (spherical wave)

conservative estimate: 𝑅 ≫ γ2λ, also depends on θ

Properties of (GHz) Transition Radiation

Target
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Angular distribution: CST simulation and analytical

Near field models:
[16] A. G. Shkvarunets and R. B. Fiorito, Phys. Rev. ST Accel. Beams 
11, 012801 
[17] R. Singh and T. Reichert, Phys. Rev. Accel. Beams 25, 032801

 Simulation: σ𝑡 = 100ps, 𝐿𝑧 = 𝐿𝑡𝑟 = 1m

 Far-Field Distribution recovered
for all 𝛽 @ θ > 55°

 Up to 𝛽 ~ 0.8 Far-Field Distribution
for all θ

CST Simulations match with near and far
field analytical models for all distances.

Far –field , R > Formation length Near –field , R < Formation length

23
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 DR is very similar to TR but charge
traverses close to the media
interface

 Here: Instead of impacting on the
target bunch can go through hole 

 Allowable hole size: Ø for  𝛽

 For 𝛽 ~ 0.15 , Ø ≤ 6mm

 Non-destructive measurements
possible!

Diffraction Radiation (DR) makes it non-invasive

𝑅 = 1m, 𝜃 = 85°

24
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GTR setup in X2

 An EM window to couple out the TR signal
 Vacuum tolerance  critical

 Absorbers to avoid reflections

 Linear phase antenna designs

25
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Bi26+ 11.4MeV/u, ~400µA, 
100µs pulse length, 36MHz RF
Antenna angle (θ) =  40 deg,
Antenna distance to target (R) = 1.0 m

Envelope of a macropulse

First results

 Good correlation with the pick-up data

 Mean beam energy matches with ToF
between pick-up and GTR

26

GTR

Phase Probe
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Bi26+ 11.4MeV/u, ~400µA, 100µs pulse length, 36MHz RF, theta =  40 deg,(R) = 1.0 m

Comparison to phase probe data

Convolved GTR has precise
agreement with phase probe signal!

27

GTR

Phase Probe
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Pulse-to-pulse variation in bunch shapes

[17] R. Singh and T. Reichert, Phys. Rev. Accel. Beams 25, 032801

28

 Three consecutive macropulses show different charge distributions

 Longitudinal diagnostics need to be prepared for such fast changes

Phase Probe

GTR
Bi26+ 11.4MeV/u, ~400µA, 100µs pulse length, 36MHz RF, theta =  40 deg,(R) = 1.0 m
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Conclusion and Outlook

 Fast and robust longitudinal diagnostics is important for various alignments 
in UNILAC.

 Lot of interesting efforts in the past  limitations for intra-macropulse and 
high intensity beam monitoring

 Advent of fast acquisition electronics allow devices with time domain 
monitoring  FFC and GTR with minimal user parameters

 FFC is a promising compact option but requires careful placement and 
biasing is essential in UNILAC energy regimes. New designs being tested, 
comparison with calculated phase space needed

 GTR a promising non-invasive option for high currents but not a 
compact installation. Further investigation under BMBF project ongoing
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