

Longitudinal beam diagnostics R&D at GSI UNILAC

HIAT 2022, Darmstadt

Rahul Singh

GSI Darmstadt

Contributors:

P. Forck, T. Reichert

r e se R. Singh, June 30th, 2022 **A determine accelerator for proton accelerator for p-physics at the future GSI longitudinal beam diagnostics R&D**

Outline

• **Introduction to UNILAC longitudinal diagnostics**

- Needs and challenges
- Phase probes

• **Past/Existing devices**:

- Particle detectors w.r.t. RF
- Time-to-space conversion: Feshenko BSM , Gas ionization BSM

• **Recent developments:** Direct time-domain

- Fast Faraday Cups (FFC)
- GHz Transition Radiation (GTR)

• **Conclusion/Outlook**

UNILAC

- UNILAC: Complex set of resonators (RFQ, IH and Alvarez) with charge stripping sections. **Two injectors** HLI and HSI served by several ion sources
- Upto 50 Hz operation, several beam types and parameters available in time multiplexed or "parallel" operation
- Significant upgrades over the last years to achieve FAIR parameters \rightarrow RFQ electrodes, H2 gas strippers, beam brilliance optimization [1] W. Barth et al., High brilliance beam investigations at Universal linear accelerator, PRAB 25, 04101 (2022)

r en

Longitudinal diagnostics and emittance

- Energy and time of arrival with respect to RF form correlated distributions
- Emittance represents the area of the phase space ellipse

$$
{\varphi \choose \delta}_{s_1} = R {\varphi \choose \delta}_{s_0}
$$

Transfer matrix R represents buncher, drift etc.

Rotation of the ellipse in phase space

- Multiple measurements of one projection enough to reconstruct both distributions **Tomography**
- Typically only time/phase w.r.t to RF measured

Longitudinal diagnostics at UNILAC

Need for longitudinal diagnostics : Frequent changes

- Injection from HSI into the Alvarez
- Min. energy spread while injection into the SIS-18
- Max. energy spread at stripper for countering straggling effects

Devices for longitudinal diagnostics

Macropulse and bunch phase w.r.t RF

100 μA He1+ after HLI @ 108 MHz rf

R. Singh, June 30th, 2022 **Generical proton accelerator for proton accelerator for proton accelerator for p-physics at the future GSI longitudinal beam diagnostics R&D**

Low velocity effect on phase probes

[4] P. Forck: Lecture notes on beam instrumentation

Lorentz boost *and* transformation of time for point charge:

Trans. *E* lab.-frame of a point charge:

For *β* < 1 Field distribution is not the same as charge distribution. Effect visible for shorter bunches < few ns r e se

R. Singh, June 30th, 2022 **A determine proton accelerator proton accelerator for proton accelerator for p-physics at the future** \overline{B} **B GSI longitudinal beam diagnostics R&D** <u>ר)</u> $\overline{}$ $\overline{\$ + + + \bullet \bullet \bullet \bullet $\mathsf{P}_\mathbf{0}$ $\ddot{\bullet}$ \bullet \bigoplus - Θ $\frac{1}{2}$ θ θ θ θ θ θ θ \bullet $\frac{1}{2}$ $\frac{1}{2}$ <u>ר ז</u> - - - - + - $\mathcal{D}% _{M_{1},M_{2}}^{(n)}(-\varepsilon)=\mathcal{D}_{M_{1},M_{2}}^{(n)}(-\varepsilon)$ \bullet \mathcal{C} $\ddot{\bullet}$ \bigcirc $\ddot{\bullet}$ 88 \mathbf{G} \bullet \circ \circ - <u>ר</u> + - - - - \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet $\mathsf{P}_\mathbf{Q}$ $\ddot{\bullet}$ \bullet \bigoplus - Θ $\frac{1}{2}$ θ θ θ θ θ θ θ \bullet **EN BRANCE COOP OF A BOOM OF COOP** \vee - - - - - - - Signal Generation in Phase Probes (β < 1) Adaptation of Animation by Rhodri Jones (CERN) The image current at the wall is monitored on a high frequency basis i.e. ac-part given by the bunched beam. \bullet

Bunch structure at low *Ekin*

Pick-ups are used for:

- Bunch-center relative to rf for the whole macropulse
- Does not show the detailed bunch structure although **directly related it**

r e m

Particle detectors as bunch shape monitor

The time of arrival of the particle is determined relative to the accelerating rf:

Foil (130 nm): attenuation ≈10⁻⁹ by Rutherford scat. **Start-detector**: Thin Al foil (50 nm) for secondary e[−] acc. toward an MCP +50 Ω anode **Stop-detector:** Diamond detector with 1 ns pulse width **TDC:** Time relative to rf, resolution less than 25 ps

Result: Correct determination of phase spread *but measured* energy spread much larger than expected values \rightarrow Foil non-uniformities, straggling on apertures.

re es tr

Bunch structure using secondary electrons

Bunch Shape Monitor (BSM): Secondary e[−] liberated from a wire or gas ionization carrying the time information. [4] P. Forck, [6] B. Zwicker, PhD thesis

Working principle:

- insertion of a 0.1 mm wire at \approx 10 kV
- immediate emission of secondary e[−] (within $<$ 10 ps)
- e [−] are accelerated toward an rf-deflector
- rf-deflector as 'time-to-space' converter
- $-$ either slow shift of the phase resolution \approx 1^o < 10 ps or "streak" the electrons

Challenges:

- Stray fields and beam fields
- Complex installation/maintenance
- Current designs: Average over several pulses

^[2] Comparison with FFC, R. Singh et al., Proc of IBIC 2021

Fast Faraday Cups (FFC)

Faraday cup designed to measure fast bunch structures

Challenges:

 Signal out-coupling should be very well matched until high frequencies , fast digitizers

> i.e. BW > $5\sigma_f = \frac{5}{2\pi}$ $2\pi\sigma_t$

- Avoid measuring the self-field of the bunch
- Suppress distortion due to esecondaries
- Heating/Melting of cups

[9] J. M. Bogaty et al. (1990): A very wide bandwidth Faraday cup suitable for measuring GHz structure on ion beams with velocities to beta < 0.01

Axially coupled co-axial (AC-Co FFC)

[7] P.Strehl, Beam instrumentation and diagnostics [8] Rawnsley et al. https://doi.org/10.1063/1.1342629

About18 US patent applications!

Radially coupled co-axial (RC-Co FFC)

[11] J. - P Carniero et al., (2019)

D. Sun and A. Shemyakin

Hole from the side in a co-axial cable

- 2mm distance from the ground to the central conductor \rightarrow avoid pre-field
- Large depth to width ratio to avoid emission of secondaries

Minor modification of previous design

R. Singh, June 30th, 2022 **GSI-Palaver, 2003,** *A decreed proton accelerator for p-physics* **R. Singh, June 30th, 2022**

RC Co-ax FFC simulations

Simulations by [13] K. Mal et al. (IUAC)

R. Singh, June 30th, 2022 **GSI-Palaver, 2003,** *A* **deceneration accelerator for proton accelerator for proton accelerator for proton and future GSI longitudinal beam diagnostics R&D**

RC- Coax FFC validation measurements@ X2

RC Coax FFC validation measurements

R. Singh, June 30th, 2022 **GSI-Palaver, 2003,** *A decreed proton accelerator for p-physics* **R. Singh, June 30th, 2022**

RC- Coax FFC SEE measurements

- Empirical estimates : 95% SEEs < 50 eV, Integrated SEE yield for 1-10 MeV/u p+ beam ~0.6-0.1 on metals. **Scales with ion charge state**
- Measured bunch shape is a strong function of DC bias voltage

R. Singh, June 30th, 2022 **GSI-Palaver, 2003,** *A dec. 10th, 2003* GSI longitudinal beam diagnostics R&D

RC- Coax FFC SEE measurements

- Speed of 1-10 eV electrons is 0.6- 2 mm/ ns.
- Bottom of the hole to ground distance in the installed device is 4mm, e.g. 1 to 2 ns delay in peak sec. e- emission
- 30 V DC bias on central conductor enough to suppress the secondaries, however risk of pulling secondaries generated in the blind hole

FFC at dispersive location

R. Singh, June 30th, 2022 **GSI-Palaver, 2003,** *A decreed proton accelerator for p-physics* **R. Singh, June 30th, 2022**

FFC at dispersive location

Fundamentals of GHz Transition Radiation (GTR)

Transition Radiation: A charge with velocity $v =$ const. crossing an interface between two media radiates.

- an interface $(z = 0)$ separating two half-spaces of different media
- solving MW-equations subject to interface conditions exhibit radiation field
- Surface electromagnetic phenomenon \rightarrow prompt radiation
- In GHz regime, **coherent** transition radiation for ~ns bunches

A potential method un-affected by pre-field and secondary emission

Properties of (GHz) Transition Radiation

GTR electric field for single charge:

$$
\vec{E} = \frac{q\beta}{2\pi\varepsilon_0 cR} \frac{\sin\theta \delta\left(\frac{R}{c} - t\right)}{1 - \beta^2 \cos^2\theta} (\hat{e}_x \cos\theta + \hat{e}_z \sin\theta)
$$

- Linear q and β dependence
- Parallel polarization for normal incidence
- Good signal: 10pC charges in 100 ps (σ) with β =0.15 \rightarrow 10 mV peak

Target Size: Effective trans. extent of incident field: $r_{\text{eff}} \sim \beta \gamma \lambda$

For targets r_{eff} : strong deviation from Far-Field

In practice: finite targets yield f –dependence

Formation Length: Distance from interface to reach Far-Field distribution (spherical wave)

conservative estimate: $R \gg \gamma^2 \lambda$, also depends on θ

R. Singh, June 30th, 2022 **GSI-Palaver, 2003,** *A decreed proton accelerator for p-physics* **R. Singh, June 30th, 2022**

Angular distribution: CST simulation and analytical

- Simulation: $\sigma_t = 100 \text{ps}$, $L_z = Ltr = 1 \text{m}$
- Far-Field Distribution recovered for all β @ $\theta > 55^{\circ}$
- Up to $\beta \sim 0.8$ Far-Field Distribution for all θ

Far –field, $R > F$ ormation length \blacksquare Near –field, $R < F$ ormation length

CST Simulations match with near and far field analytical models for all distances.

Near field models:

[16] A. G. Shkvarunets and R. B. Fiorito, Phys. Rev. ST Accel. Beams 11, 012801

[17] R. Singh and T. Reichert, Phys. Rev. Accel. Beams 25, 032801

G S II

Diffraction Radiation (DR) makes it non-invasive

- DR is very similar to TR but charge traverses close to the media interface
- $-$ Here: Instead of impacting on the target bunch can go through hole
- Allowable hole size: \emptyset for β
- $-$ For $\beta \sim 0.15$, $\emptyset \leq 6$ mm
- **Non-destructive measurements possible!**

GTR setup in X2

- An EM window to couple out the TR signal \rightarrow Vacuum tolerance \rightarrow critical
- Absorbers to avoid reflections
- Linear phase antenna designs

R. Singh, June 30th, 2022 **GSI-Palaver, 2003,** *A decreed proton accelerator for p-physics* **R. Singh, June 30th, 2022**

FS T

First results

Bi26+ 11.4MeV/u, ~400µA, 100µs pulse length, 36MHz RF Antenna angle $(θ) = 40$ deg, Antenna distance to target $(R) = 1.0$ m

- Good correlation with the pick-up data
- Mean beam energy matches with ToF between pick-up and GTR

r s r

Comparison to phase probe data

Bi²⁶⁺ 11.4MeV/u, ~400µA, 100µs pulse length, 36MHz RF, theta = 40 deg,(R) = 1.0 m

R. Singh, June 30th, 2022 **GSI-Palaver, 2003,** *A decreed proton accelerator for p-physics* **and p-physics at the future GSI longitudinal beam diagnostics R&D**

Pulse-to-pulse variation in bunch shapes

B $i^{26+11.4}$ MeV/u, ~400µA, 100µs pulse length, 36MHz RF, theta = 40 deg, (R) = 1.0 m

- Three consecutive macropulses show different charge distributions
- Longitudinal diagnostics need to be prepared for such fast changes

[17] R. Singh and T. Reichert, Phys. Rev. Accel. Beams 25, 032801

rs i

Conclusion and Outlook

- Fast and robust longitudinal diagnostics is important for various alignments in UNILAC.
- Lot of interesting efforts in the past \rightarrow limitations for intra-macropulse and high intensity beam monitoring
- Advent of fast acquisition electronics allow devices with time domain monitoring \rightarrow FFC and GTR with minimal user parameters
- FFC is a promising **compact option** *but* requires careful placement and biasing is essential in UNILAC energy regimes. New designs being tested, comparison with calculated phase space needed
- GTR a promising **non-invasive option for high currents** *but* not a compact installation. Further investigation under BMBF project ongoing Acknowledgements :

Machine operating team!!!

BI Deptt.: C. Dorn , S. Fielder, S. Klaproth, C. Krueger, T. Luckhardt, W. Maier, T. Milosic, M. Mueller, A. Reiter, T. Sieber, B. Walasek-Hoehne **LINAC Deptt.:** W. Barth, M. Miski-Oglu, S. Lauber, U Scheeler, H. Vormann, M. Vossberg, S. Yaramyshev

IUAC: K. Mal, G. Rodrigues, S. Kumar , **FNAL:** V. Scarpine, A. Shemyakin,D. Sun

References

- 2. R. Singh et al. Comparison of Feschenko BSM and Fast Faraday Cup with Low Energy Ion Beams , Proc of IBIC 2021,
- 3. S. Lauber et al., Longitudinal phase space reconstruction for a heavy ion accelerator, Phys. Rev. Accel. Beams 23, 114201
- 4. P. Forck, JUAS Lecture notes on beam instrumentation, 2021
- 5. T. Milosic , Feasibility Study on Longitudinal Phase-Space Measurements at GSI UNILAC using Charged-Particle Detectors, PhD thesis
- 6. B. Zwicker, Design of a Bunch Shape Monitor for High Current LINACs at GSI, PhD thesis, University Frankfurt 2016
- 7. P. Strehl, Beam instrumentation and diagnostics, ISBN: 978-3-540-26404-0
- 8. W. R. Rawnsley et al., AIP Conference Proceedings 546, 547 (2000) <https://doi.org/10.1063/1.1342629>
- 9. J. M. Bogaty et al.: A very wide bandwidth Faraday cup suitable for measuring GHz structure on ion beams with velocities to beta < 0.01, Proc. of Linear Accelerator Conference 1990, Albuquerque, New Mexico, USA
- 10.M. Ferianis et al., Characterization of Fast Farday cups at the ELETTRA LINAC, Proc. of DIPAC'03
- 11.J. Matthew and A. Bajaj, An improved strip-line fast Faraday cup for beam bunch measurements, Review of Scientific Instruments 91, 113305 (2020) <https://doi.org/10.1063/5.0025457>
- 12.J.-P. Carniero et al, International Journal of Modern Physics A, Vol. 34, No. 36 (2019)
- 13.K. Mal et al., Study and improvements of a radially coupled coaxial Fast Faraday cup design towards lower intensity beams, Under preperation
- 14.J. R. Vaughan. Secondary Emission Formulas. IEEE Transactions on Electron Devices, 40(4), 1993
- 15.A. Reiter et al., Investigation of Cross Talk in Secondary Electron Emission Grids. Technical Note LOBI-TN-SEM-2012-001
- 16.A. G. Shkvarunets and R. B. Fiorito, Phys. Rev. ST Accel. Beams 11, 012801
- 17.R. Singh and T. Reichert, Phys. Rev. Accel. Beams 25, 032801