

Longitudinal beam diagnostics R&D at GSI UNILAC

HIAT 2022, Darmstadt

Rahul Singh

GSI Darmstadt

Contributors:

P. Forck, T. Reichert

Outline

Introduction to UNILAC longitudinal diagnostics

- Needs and challenges
- Phase probes

• Past/Existing devices:

- Particle detectors w.r.t. RF
- Time-to-space conversion: Feshenko BSM , Gas ionization BSM

• Recent developments: Direct time-domain

- Fast Faraday Cups (FFC)
- GHz Transition Radiation (GTR)

Conclusion/Outlook

UNILAC

- UNILAC: Complex set of resonators (RFQ, IH and Alvarez) with charge stripping sections. Two injectors HLI and HSI served by several ion sources
- Upto 50 Hz operation, several beam types and parameters available in time multiplexed or "parallel" operation
- Significant upgrades over the last years to achieve FAIR parameters → RFQ electrodes, H2 gas strippers, beam brilliance optimization

[1] W. Barth et al., High brilliance beam investigations at Universal linear accelerator, PRAB 25, 04101 (2022)

F S S T

Longitudinal diagnostics and emittance

- Energy and time of arrival with respect to RF form correlated distributions
- Emittance represents the area of the phase space ellipse

$$\binom{\varphi}{\delta}_{s_1} = \mathbf{R} \binom{\varphi}{\delta}_{s_0}$$

Transfer matrix **R** represents buncher, drift etc.

Rotation of the ellipse in phase space

- Multiple measurements of one projection enough to reconstruct both distributions
 → Tomography
- Typically only time/phase w.r.t to RF measured

Longitudinal diagnostics at UNILAC

Need for longitudinal diagnostics : Frequent changes

- Injection from HSI into the Alvarez
- Min. energy spread while injection into the SIS-18
- Max. energy spread at stripper for countering straggling effects

Devices for longitudinal diagnostics

Macropulse and bunch phase w.r.t RF

100 µA He¹⁺ after HLI @ 108 MHz rf

R. Singh, June 30th, 2022

Low velocity effect on phase probes

[4] P. Forck: Lecture notes on beam instrumentation

Lorentz boost *and* transformation of time for point charge:

Trans. \boldsymbol{E}_{\perp} lab.-frame of a point charge:

For $\beta < 1 \rightarrow$ Field distribution is not the same as charge distribution. Effect visible for shorter bunches < few ns

R. Singh, June 30th, 2022

Signal Generation in Phase Probes ($\beta < 1$) The image current at the wall is monitored on a high frequency basis V i.e. ac-part given by the bunched beam. Adaptation of Animation by Rhodri Jones (CERN) R. Singh, June 30th, 2022 GSI longitudinal beam diagnostics R&D 8

Bunch structure at low Ekin

Pick-ups are used for:

- Bunch-center relative to rf for the whole macropulse
- Does not show the detailed bunch structure although directly related it

651

Particle detectors as bunch shape monitor

The time of arrival of the particle is determined relative to the accelerating rf:

Foil (130 nm): attenuation $\approx 10^{-9}$ by Rutherford scat. **Start-detector**: Thin Al foil (50 nm) for secondary e⁻ acc. toward an MCP +50 Ω anode **Stop-detector**: Diamond detector with 1 ns pulse width **TDC**: Time relative to rf, resolution less than 25 ps

Result: Correct determination of phase spread *but measured* energy spread much larger than expected values \rightarrow Foil non-uniformities, straggling on apertures.

G 55 H

Bunch structure using secondary electrons

Bunch Shape Monitor (BSM): Secondary e⁻ liberated from a wire or gas ionization carrying the time information.

Working principle:

- insertion of a 0.1 mm wire at \approx 10 kV
- immediate emission of secondary e⁻ (within < 10 ps)
- e⁻ are accelerated toward an rf-deflector
- rf-deflector as 'time-to-space' converter
- either slow shift of the phase resolution $≈1^{\circ} < 10$ ps or "streak" the electrons

Challenges:

- Stray fields and beam fields
- Complex installation/maintenance
- Current designs: Average over several pulses

^[2] Comparison with FFC, R. Singh et al., Proc of IBIC 2021

Fast Faraday Cups (FFC)

Faraday cup designed to measure fast bunch structures

Challenges:

 Signal out-coupling should be very well matched until high frequencies , fast digitizers

i.e. BW >
$$5\sigma_f = \frac{5}{2\pi\sigma_t}$$

- Avoid measuring the self-field of the bunch
- Suppress distortion due to e⁻ secondaries
- Heating/Melting of cups

[9] J. M. Bogaty et al. (1990): A very wide bandwidth Faraday cup suitable for measuring GHz structure on ion beams with velocities to beta < 0.01

Axially coupled co-axial (AC-Co FFC)

[7] P.Strehl, Beam instrumentation and diagnostics[8] Rawnsley et al. https://doi.org/10.1063/1.1342629

About18 US patent applications!

Radially coupled co-axial (RC-Co FFC)

- Hole from the side in a co-axial cable
- 2mm distance from the ground to the central conductor → avoid pre-field
- Large depth to width ratio to avoid emission of secondaries

Minor modification of previous design

R. Singh, June 30th, 2022

D. Sun and A. Shemyakin

RC Co-ax FFC simulations

Simulations by [13] K. Mal et al. (IUAC)

R. Singh, June 30th, 2022

RC- Coax FFC validation measurements@ X2

RC Coax FFC validation measurements

R. Singh, June 30th, 2022

RC- Coax FFC SEE measurements

- Empirical estimates : 95% SEEs < 50 eV, Integrated SEE yield for 1-10 MeV/u p+ beam ~0.6-0.1 on metals. Scales with ion charge state
- Measured bunch shape is a strong function of DC bias voltage

R. Singh, June 30th, 2022

RC- Coax FFC SEE measurements

- Speed of 1-10 eV electrons is 0.6- 2 mm/ ns.
- Bottom of the hole to ground distance in the installed device is 4mm, e.g. 1 to 2 ns delay in peak sec. e- emission
- 30 V DC bias on central conductor enough to suppress the secondaries, however risk of pulling secondaries generated in the blind hole

G 55 M

FFC at dispersive location

GSI longitudinal beam diagnostics R&D

FFC at dispersive location

Fundamentals of GHz Transition Radiation (GTR)

Transition Radiation: A charge with velocity v = const. crossing an interface between two media radiates.

- an interface (z = 0) separating two half-spaces of different media
- solving MW-equations subject to interface conditions exhibit radiation field
- Surface electromagnetic phenomenon
 → prompt radiation
- In GHz regime, coherent transition radiation for ~ns bunches

A potential method un-affected by pre-field and secondary emission

Properties of (GHz) Transition Radiation

GTR electric field for single charge:

$$\vec{E} = \frac{q\beta}{2\pi\varepsilon_0 cR} \frac{\sin\theta\,\delta\left(\frac{R}{c} - t\right)}{1 - \beta^2\cos^2\theta} (\hat{e}_x \cos\theta + \hat{e}_z\sin\theta)$$

- Linear q and β dependence
- Parallel polarization for normal incidence
- Good signal: 10pC charges in 100 ps (σ) with β =0.15 \rightarrow 10 mV peak

Target Size: Effective trans. extent of incident field: $r_{\rm eff} \sim \beta \gamma \lambda$

For targets $< r_{\rm eff}$: strong deviation from Far-Field

In practice: finite targets yield f-dependence

Formation Length: Distance from interface to reach Far-Field distribution (spherical wave)

conservative estimate: $R \gg \gamma^2 \lambda$, also depends on θ

GSI longitudinal beam diagnostics R&D

f in [MHz]

 10^{3}

651

 10^{2}

Angular distribution: CST simulation and analytical

Far –field , R > Formation length

- Simulation: $\sigma_t = 100$ ps, $L_z = Ltr = 1$ m
- Far-Field Distribution recovered for all $\beta @ \theta > 55^{\circ}$
- Up to $\beta \sim 0.8$ Far-Field Distribution for all θ

Near –field, R < Formation length

CST Simulations match with near and far field analytical models for all distances.

Near field models:

[16] A. G. Shkvarunets and R. B. Fiorito, Phys. Rev. ST Accel. Beams 11, 012801

[17] R. Singh and T. Reichert, Phys. Rev. Accel. Beams 25, 032801

GSI

Diffraction Radiation (DR) makes it non-invasive

- DR is very similar to TR but charge traverses close to the media interface
- Here: Instead of impacting on the target bunch can go through hole
- Allowable hole size: \emptyset for β
- For $\beta \sim 0.15$, $\emptyset \leq 6$ mm
- Non-destructive measurements possible!

GTR setup in X2

- Absorbers to avoid reflections
- Linear phase antenna designs

First results

Bi²⁶⁺ 11.4MeV/u, ~400 μ A, 100 μ s pulse length, 36MHz RF Antenna angle (θ) = 40 deg, Antenna distance to target (R) = 1.0 m

- Good correlation with the pick-up data
- Mean beam energy matches with ToF between pick-up and GTR

G 55 H

Comparison to phase probe data

 Bi^{26+} 11.4MeV/u, ~400µA, 100µs pulse length, 36MHz RF, theta = 40 deg,(R) = 1.0 m

R. Singh, June 30th, 2022

Pulse-to-pulse variation in bunch shapes

 Bi^{26+} 11.4MeV/u, ~400µA, 100µs pulse length, 36MHz RF, theta = 40 deg,(R) = 1.0 m

- Three consecutive macropulses show different charge distributions
- Longitudinal diagnostics need to be prepared for such fast changes

[17] R. Singh and T. Reichert, Phys. Rev. Accel. Beams 25, 032801

GSI

Conclusion and Outlook

- Fast and robust longitudinal diagnostics is important for various alignments in UNILAC.
- Lot of interesting efforts in the past → limitations for intra-macropulse and high intensity beam monitoring
- Advent of fast acquisition electronics allow devices with time domain monitoring → FFC and GTR with minimal user parameters
- FFC is a promising compact option but requires careful placement and biasing is essential in UNILAC energy regimes. New designs being tested, comparison with calculated phase space needed
- GTR a promising non-invasive option for high currents but not a compact installation. Further investigation under BMBF project ongoing Acknowledgements :

Machine operating team!!!

BI Deptt.: C. Dorn , S. Fielder, S. Klaproth, C. Krueger, T. Luckhardt, W. Maier, T. Milosic, M. Mueller, A. Reiter, T. Sieber, B. Walasek-Hoehne **LINAC Deptt.:** W. Barth, M. Miski-Oglu, S. Lauber, U Scheeler, H. Vormann, M. Vossberg, S. Yaramyshev

IUAC: K. Mal, G. Rodrigues, S. Kumar, FNAL: V. Scarpine, A. Shemyakin, D. Sun

References

- 2. R. Singh et al. Comparison of Feschenko BSM and Fast Faraday Cup with Low Energy Ion Beams, Proc of IBIC 2021,
- 3. S. Lauber et al., Longitudinal phase space reconstruction for a heavy ion accelerator, Phys. Rev. Accel. Beams 23, 114201
- 4. P. Forck, JUAS Lecture notes on beam instrumentation, 2021
- 5. T. Milosic , Feasibility Study on Longitudinal Phase-Space Measurements at GSI UNILAC using Charged-Particle Detectors, PhD thesis
- 6. B. Zwicker, Design of a Bunch Shape Monitor for High Current LINACs at GSI, PhD thesis, University Frankfurt 2016
- 7. P. Strehl, Beam instrumentation and diagnostics, ISBN: 978-3-540-26404-0
- 8. W. R. Rawnsley et al., AIP Conference Proceedings 546, 547 (2000) https://doi.org/10.1063/1.1342629
- 9. J. M. Bogaty et al.: A very wide bandwidth Faraday cup suitable for measuring GHz structure on ion beams with velocities to beta < 0.01, Proc. of Linear Accelerator Conference 1990, Albuquerque, New Mexico, USA
- 10. M. Ferianis et al., Characterization of Fast Farday cups at the ELETTRA LINAC, Proc. of DIPAC'03
- 11. J. Matthew and A. Bajaj, An improved strip-line fast Faraday cup for beam bunch measurements, Review of Scientific Instruments 91, 113305 (2020) <u>https://doi.org/10.1063/5.0025457</u>
- 12. J.-P. Carniero et al, International Journal of Modern Physics A, Vol. 34, No. 36 (2019)
- 13.K. Mal et al., Study and improvements of a radially coupled coaxial Fast Faraday cup design towards lower intensity beams, Under preparation
- 14. J. R. Vaughan. Secondary Emission Formulas. IEEE Transactions on Electron Devices, 40(4), 1993
- 15. A. Reiter et al., Investigation of Cross Talk in Secondary Electron Emission Grids. Technical Note LOBI-TN-SEM-2012-001
- 16. A. G. Shkvarunets and R. B. Fiorito, Phys. Rev. ST Accel. Beams 11, 012801
- 17. R. Singh and T. Reichert, Phys. Rev. Accel. Beams 25, 032801