

First Intense Beam at JUNA 400 kV Underground Accelerator

L. Sun^{1,2}, B. Q. Cui³, L. H. Chen³, Q. Wu¹, J. Q. Li¹, Y. G. Liu¹, J. L. Liu¹, P. P. Wang¹, G. Lian³, X. D. Tang^{1,2}, J. J. He⁴, Z. H. Li³, B. Guo³, W. P. Liu³, H. W. Zhao^{1,2}

¹Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China ²School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China ³China Institute of Atomic Energy, Beijing 102413, China ⁴Beijing Normal University, 100875, China

HIAT'22, June 27~July 01, 2022, Darmstadt, Germany

DJUNA accelerator facility and its challenges

Development of JUNA 400 kV accelerator facility

DJUNA first underground beams

□Scope of JUNA and JUNA-II

Low energy Astronuclear Physics:

- Very low background
- High beam intensity

Underground Accelerator Facilities Around the World

Jinping Underground Nuclear Astrophysics experiment

Key reactions of very low cross sections at stellar energy :

- ¹²C(α, γ)¹⁶O
- ¹³C(α, n)¹⁶O
- ²⁵Mg(p, γ)²⁶Al
- ¹⁹F(**p**, α)¹⁶O

		JUNA	LUNA	DIANA	CASPAR project
Source type		2.45 GHz ECR source	RF source	2.45 GHz ECR source	RF source
	H+	10 mA	1 mA	100mA	0.1 mA
I _a	He⁺	10 mA	0.5 mA	50mA	0.1 mA
7	He ²⁺	2.0 mA	/	/	/
Beam energy		70~800 keV	20~400 keV	50~400 keV	1 MeV

General Issues

- Low background control
- High reliability
- Low power consumption rate
- Footprint control

Ion Source

- Production of intense He²⁺
- Contamination removal
- Beam quality control

Accelerator

- Wide beam energy range
- Low energy spread
- Beam quality control
- High mass resolution

JUNA Accelerator Challenges

Intense He²⁺ production

Parameters	Values				
Beam Energy (keV/q)	30~50				
Frequency (GHz)	2.45				
P _{rf} (kw)	0.3~2.0				
Extraction system	4-electrode				
n.rms emittance (π.mm.mrad)	<0.2				
Beam Intensities (emA)					
H⁺	> 10				
He⁺	> 10				
He ²⁺	>2.0				

2.45 GHz microwave source \rightarrow H⁺ & He²⁺??

- Low electron energy (production)
- High gas pressure (recombination)

He⁺ generation:H⁺ generation: $e + He \rightarrow He^+ + 2e$ $e + H_2 \rightarrow e + H + H$ E=24.6 eV $e + H \rightarrow 2e + H^+$ E=13.6 eVHe²⁺ generation:

 $e + He^+ \rightarrow He^{2+}+2e$

E=54.4 eV

Intense He²⁺ production

-5.240ms (a) 6.760ms (b)

2 / 1.88 V

29 12月202 09:12:13

XY 显示

50.0k次/秒 1000 点

水平 位置

2.00ms

Parameters	Values
Extraction HV (kV)	30~50
Frequency (GHz)	2.45
P _{rf} (kW)	0.3~1.0
Extraction system	3-electrode
n.rms emittance (π.mm.mrad)	<0.2

Via Accelerator Mass Separator

•Beam energy 260 keV/q

•M/ΔM > 260, slit=0.36 mm

•He²⁺vs.H₂⁺: M/ Δ M~140

Intense He²⁺ production

- Ultra compact
- Intense medium charge state ion beam production
- Low power consumption

LAPECR1 ion source specs

Parameters	Unit	Design
B _{in} (with iron insert)	Т	0.62(1.40)
B _{ex} (with iron insert)	Т	0.62(0.70)
B _{min}	Т	0.38
B _r	Т	1.0
Chamber ID	mm	Ø40
Mirror Length	mm	74
Lecr	mm	55
NdFeB	/	N50M/N52M
Frequency	GHz	14.5
Size	mm	Ø202*200

Intense He²⁺ production

Typical He²⁺ results:

- ✓ microwave 425 W @14.5 GHz
- ✓ Extraction HV: 20 kV
- ✓ Output: >1.5 emA He²⁺

- ~1 emA He²⁺Beam quality (no optimized)
- $\varepsilon_{n.rms_x} = 0.29 \pi mm.mrad$
- $\varepsilon_{n.rms_y} = 0.42 \ \pi mm.mrad$

Beam transmission at high intensity

- Well controlled beam envelope to maximize beam transmission
- Well defined symmetric ion beam at target area

Beam flexibilities in wide energies and intensities

- Flexible optimization of beam matching to target area
- Well controlled beam quality within wide beam energy (70~800 keV) and intensity (0.1~10 emA) ranges

ions	Energy (keV)	current	(emA)	α	β(cm/mrad)	γ (mrad/cm)
H+	70		10	1.60937	0.38107	9.421029724
H+	150		10	1.67518	0.21358	17.82108827
H+	250		10	1.49579	0.12974	24.95288827
H+	400		10	1.33821	0.09643	28.94126313
He+	200		10	1.5882	0.22399	15.72560936
He+	300		10	1.48113	0.15681	20.36697964
He+	400		10	0.96692	0.06246	30.978775
He2+	400		5	1.52517	0.12984	25.61724837
He2+	600		5	1.52517	0.12984	25.61724837
He2+	800		5	1.47484	0.1174	27.04559647

LEBT Concerns

•Beam optics matching for Downstream Accelerator-Acc. Tube

- High transmission efficiency
- Beam optics
 - 2 sets of correctors for beam errors
 - 2-solenoid→Twiss parameters control
 - 30~50 kV extraction HV for different Acc. Tube HV
- Minimize contamination
 - 30° dipole magnet
 - Dump unwanted beam at low energy and far away from target area
 - Minimize beam loss of unwanted beam in Acc. Tube
 - Water cooling beam dump
- •Lower the platform current load
 - Separate He²⁺ from He⁺
- Beam diagnostics and control for experiments
 - Beam quality
 - Beam intensity

Ion source beam line

Filtering beam contaminants:

- D⁺ out of H⁺ beam
- He²⁺ out of He⁺ beam

Acceleration Tube

Mitigate SPC influence
 •High accelerating gradient field, 4 gaps in 250 mm
 •ID Φ80 mm beam pipe
 •Screening electrode at the exit

Structure Concerns

•99% Al₂O₃ ceramics for electric insulter
•Electrodes and resistors cooled by LCW water
•LCW water tube served as the resistor dividers

Acceleration Tube

Acceleration tube scaled to 400 kV potential

E field Gradient:

E_{max in vacuum} <75kV/cm
 E_{max in air} <12kV/cm

Main Dipole

- □ 90° C-Type Dipole
- □ 110 mm gap, r=600mm
- ±50mm Good field region with < 0.1% homogeneity
- Operational field: 500~3600 Gs

Iron Yoke

- Distribute the beam to the terminal
- Remove D⁺ from He²⁺ beam
- High transmission efficiency
- Minimize spherical aberration

- Insulation post: 1550 mm
- Platform footprint: 4.8×3.6 m²
- HV power supply stability: <1‰

Max electric field <15 kV/cm

LCW manifold

- Cooling capacity: 80 kW
- Water flow: 100 L/min
- Water resistance
 - 2 spiral insulator pipes
 - polypropylene (PPR,Φ32) pipe
 - supported by PE
- Pressure drop < 0.1 MPa @100 L/min</p>
- Drain current@350 kV: ≤1 mA

- Whole system assembly
- Beam commissioning
- Beam on target check

- High beam transmission efficiency in the accelerator
- Accelerated currents: 12 mA or higher
- Performance and reliability demonstrated

Ion sources installed at ground lab test

Commissioning at Ground Lab:

- More than 1,000 hours beam time
- Tested all needed ion beams
- Accelerator performance, stability and reliability
- Some experimental tests

JUNA 1st Underground Beams: Construction

	 Accelerator components pack Shipment Arrival at JUNA site 	ing te	 First accelerated beam Experiment preparatio 	$ \begin{array}{c} $
2020.9	2020.10	2020.11	2020.12	2021.1
Kickoff Meeting		 Accelerator assembl Utilities readiness JUNA laboratory con Ion source beam ext 	y on site Instruction raction	Announcement of JUNA underground experiments started

JUNA 1st Underground Beams: Construction

Arrival

Completed

Construction

JUNA Beams: Jan. ~ April, 2021

Experiments	lon Beam	E (keV)	l (emA)	Beam Exposure (C)
¹² C(p, γ) ¹³ N	H⁺	200 - 340	2.1	117
²⁵ Mg(p, γ) ²⁶ Al	H⁺	110	2	1400
¹⁹ F (p, αγ) ¹⁶ O	H⁺	88 - 375	1-2	475
	He ²⁺	400 - 785	0.4	12.4
$^{13}C(\alpha, n)^{16}O$	He⁺	250 - 400	0.5-2.5	363
¹² C(α, γ) ¹⁶ O	He ²⁺	780	1	400

Best beam performance:
■ H⁺: 4.7 emA@70 keV
■ He⁺: 6 emA@390 keV
■ He²⁺: 2 emA@760 keV

JUNA 1st Underground Beams: Operation

Energy calibration for JUNA 400 kV

Linear dependence of the observed energy deviation vs. applied voltage

JUNA: ¹⁹F(p, $\alpha\gamma$)¹⁶O reaction spectrum

PHYSICAL REVIEW LETTERS 127, 152702 (2021)

Editors' Suggestion Featured in Physics

Direct Measurement of the Astrophysical ${}^{19}F(p,\alpha\gamma){}^{16}O$ Reaction in the Deepest Operational Underground Laboratory

L. Y. Zhang,¹ J. Su,¹ J. J. He⁰,^{1,*} M. Wiescher,^{2,†} R. J. deBoer,² D. Kahl,³ Y. J. Chen,¹ X. Y. Li,¹ J. G. Wang,⁴ L. Zhang,⁵ F. Q. Cao,⁵ H. Zhang,⁵ Z. C. Zhang,⁶ T. Y. Jiao,⁴ Y. D. Sheng,¹ L. H. Wang,¹ L. Y. Song,¹ X. Z. Jiang,¹ Z. M. Li,¹ E. T. Li,⁶ S. Wang,⁷ G. Lian,⁵ Z. H. Li,⁵ X. D. Tang,⁴ H. W. Zhao,⁴ L. T. Sun,⁴ Q. Wu,⁴ J. Q. Li,⁴ B. Q. Cui,⁵ L. H. Chen,⁵ R. G. Ma,⁵ B. Guo,⁵ S. W. Xu,⁴ J. Y. Li,⁴ N. C. Qi,⁸ W. L. Sun,⁸ X. Y. Guo,⁸ P. Zhang,⁸ Y. H. Chen,⁸ Y. Zhou,⁸ J. F. Zhou,⁸ J. R. He,⁸ C. S. Shang,⁸ M. C. Li,⁸ X. H. Zhou,⁴ Y. H. Zhang,⁴ F. S. Zhang,¹ Z. G. Hu,⁴ H. S. Xu,⁴ J. P. Chen,¹ and W. P. Liu^{5,‡} ¹Key Laboratory of Beam Technology and Material Modification of Ministry of Education. College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China ²Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46556, USA ³Extreme Light Infrastructure-Nuclear Physics, Horia Hulubei National Institute for Research and Development in Physics and Nuclear Engineering (IFIN-HH), Rucharest-Mägurele 077125, Romania ⁴Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China ⁵China Institute of Atomic Energy, Beijing 102413, China ⁶College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai 264209, China ⁸Yalong River Hydropower Development Company, Chengdu 610051, China

(Received 23 June 2021; revised 1 August 2021; accepted 24 August 2021; published 7 October 2021)

Fluorine is one of the most interesting elements in nuclear astrophysics, where the ${}^{19}F(p, \alpha){}^{16}O$ reaction is of crucial importance for Galactic 19F abundances and CNO cycle loss in first generation Population III stars. As a day-one campaign at the Jinping Underground Nuclear Astrophysics experimental facility, we report direct measurements of the essential ${}^{19}F(p, \alpha\gamma){}^{16}O$ reaction channel. The γ -ray yields were measured over $F_{--} = 72.4-344$ keV, covering the Gamow window: our energy of 72.4 keV is unprecedentedly low. reported here for the first time. The experiment was performed under the extremely low cosmic-rayinduced background environment of the China JinPing Underground Laboratory, one of the deepest underground laboratories in the world. The present low-energy S factors deviate significantly from previous theoretical predictions, and the uncertainties are significantly reduced. The thermonuclear ${}^{19}F(p,\alpha r){}^{16}O$ reaction rate has been determined directly at the relevant astrophysical energies.

DOI: 10.1103/PhysRevLett.127.152702

The astrophysical origin of fluorine is puzzling. Fluorine is a monoisotopic element, and the stable nuclide ¹⁹F is rather fragile-a curious and critically important point in nuclear astrophysics. It does not contribute to, nor is it synthesized in, the main nuclear reactions taking place in branch (AGB) stars [6,7]; Meynet and Arnould [8] idenstars. ¹⁹F has a limited number of atomic and molecular tified He burning in Wolf-Rayet stars. Kobayashi et al. [9] absorption lines in stellar spectra from which reliable abundances are derived, making the nucleosynthetic origin of ¹⁹F the least understood of all the light elements [1]. In stellar interiors, 19F is readily annihilated by the most abundant elements, hydrogen and helium, via the ${}^{19}F(p, \alpha){}^{16}O$ and ${}^{19}F(\alpha, p){}^{22}Ne$ reactions, respectively. In order to explain the presence of fluorine, a mechanism is required that enables it to escape from the hot stellar interior after it forms.

Theoretical calculations and observational data suggest several possible ¹⁹F production sites [2,3]. Woosley and Haxton [4] calculated 19F production in type II of the ${}^{19}F(p, \alpha){}^{16}O$ reaction plays an essential role.

0031-9007/21/127(15)/152702(6)

© 2021 American Physical Society

core-collapse supernovae by neutrino spallation on ²⁰Ne; Jorissen et al. [5] observed the 19F overabundances (with

respect to solar) in red giant stars and provided evidence for

19F production during shell He burning in asymptotic giant

considered the neutrino-process nucleosynthesis as the

major origin of ¹⁹F in metal-deficient stars (type II and

Ia supernovae and hypernovae), as well as AGB stars, and

such supernova provides a celestial site to study the

neutrino-nucleus interactions and flavor oscillations in

high-density matter [10] In addition, a signature of fluorine

was indeed observed in the spectra of Nova Mon 2012 [11]:

however, classical novae seem to account for $\leq 1\%$ of its

solar abundance [12]. Therefore, it remains an open

question, to what extent each candidate site may contribute

to the Solar System and Galactic fluorine, and a precise rate

19 F(p, α g) 16 O reaction

152702-1

25 Mg(p, γ) 26 Al reaction

PHYSICAL REVIEW LETTERS

Accepted Paper

Deep underground laboratory measurement of ${}^{13}C(\alpha,n){}^{16}O$ in the Gamow windows of the sand *i*-processes Phys. Rev. Lett.

B. Gao et al.

Accepted 1 June 2022

ABSTRACT

The ${}^{13}C(\alpha,n){}^{16}O$ reaction is the main neutron source for the slow-neutroncapture (s-) process in Asymptotic Giant Branch stars and for the intermediate (i-) process. Direct measurements at astrophysical

$^{13}C(\alpha, n)^{16}O$ reaction

Scope of JUNA

Phase-I: back to operation in 2023

Acknowledgement

Collaboration Team

IAC Members

- M. Wiescher
- T. Motobayashi
 - Z. J. Wang
 - C. Brune
 - M. Junker
 - **D.** Robertson
 - F. Strieder
 - D. Leitner

Q. Yue

- JUNA underground lab successfully constructed and used for the 4 critical reactions
- JUNA accelerator delivered mA H⁺ and He²⁺ beams for the experiments
 - Large flexibility in beam energy choice (70~400 keV/q)
 - Intense beam production
 - Suitable for underground lab
 - Reliable and stable
- First beam on target leads to promising results
- JUNA will be recovered in 2023 and JUNA-II is foreseen

Thanks for your Attention!

