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Abstract 
The use of artificial intelligence can significantly reduce 

the time needed to tune an accelerator system such as the 
Argonne Tandem Linear Accelerator System (ATLAS) 
where a new beam is tuned once or twice a week. After 
establishing automatic data collection procedures and hav-
ing analysed the data, machine learning models were de-
veloped and tested to tune subsections of the linac. Models 
based on Reinforcement Learning (RL) and Bayesian Op-
timization (BO) were developed, their respective results 
are discussed and compared. RL and BO are well known 
AI techniques, often used for control systems. The results 
were obtained for a subsection of ATLAS that contains 
complex elements such as the radio-frequency quadrupole 
(RFQ). The models will be later generalized to the whole 
ATLAS linac, and similar models can be developed for any 
accelerator with a modern control system. 

INTRODUCTION 
The Argonne Tandem Linear Accelerator System (AT-

LAS) [1] is a DOE/NP User Facility for studying low-en-
ergy nuclear physics with heavy ions. It operates ~6000 h 
per year. The facility (see Fig. 1), uses three ion sources 
and services six target areas at energies from ~1– 
15 MeV/u.  To accommodate the total number of approved 
experiments and their wide range of beam-related require-
ments, ATLAS reconfigures once or twice per week over 
40 weeks of operation per year. The start-up time varies 
from ~12 to 48 hours depending on the complexity of the 
tuning, which will increase with the upcoming Multi-User 
Upgrade designed to deliver beams to two experimental 
stations simultaneously [2]. 

 
Figure 1: ATLAS Layout. 

The procedure of tuning such an accelerator system is 
time-consuming and relies heavily on the intuition and ex-
perience of the operators. The uncertainties involved in 
tuning are in part due to unknown misalignments of the 
beamline components and the limited number of diagnostic 
devices to properly characterize the beam. The use of ma-
chine learning (ML) and artificial intelligence (AI) has the 
potential of filling the information gap and significantly re-
duce the time needed to tune the accelerator. 

By reducing the time for beam tuning, more beam time 
will be available to help relieve the over-booked experi-
mental nuclear physics program at ATLAS. In addition to 
beam tuning, AI/ML models can be used to improve beam 
quality with the installation of new diagnostics and real-
time data acquisition. These improvements will increase 
the facility’s scientific throughput and the quality of the 
data collected.  

To support these developments, DOE/NP has approved 
a project to use AI/ML to support ATLAS operations. Fol-
lowing a description of the project objectives and future 
plans, the results from the most recent developments will 
be presented and discussed.  

PROJECT OBJECTIVES & PLANS  
The main project goal is to use AI/ML techniques to 

streamline beam tuning and help improve machine perfor-
mance. The idea is to leverage artificial intelligence for 
linac operations, as shown in Fig. 2., with the ultimate goal 
of developing an AI model to tune the machine while also 
acquiring all kind of information from the AI model that 
could help improve operations. 

 
Figure 2: Basic representation of how an AI model could 
help particle accelerator operations. 

The project objectives are threefold:  
• Establish data collection, organization, and classifica-

tion, towards a fully automatic and electronic data collec-
tion for both machine and beam data.  
• Develop an online tuning model to optimize opera-

tions, shorten beam tuning time and make more beam time 
available for the experimental program.  
• Develop a virtual machine model to enhance our un-

derstanding of the machine behavior, improve machine 
performance, optimize particular aspects and help develop 
new operating modes. 

DATA COLLECTION 
In any AI project, data collection is the first and most 

important step. Along with the data collection, cleaning 
and organizing the data are also the most time-consuming 
tasks. Therefore, the primary focus at the beginning of this 
project was on collecting the data on the state of the ma-
chine and the beam to be used for AI/ML modeling to sup-
port beam tuning and daily machine operations. Due to the 
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challenges that come with training with a real machine and 
the lack of ATLAS availability, the first steps in designing 
and training a model should use data from beam physics 
simulations codes. 

Before moving to the developments on the data collec-
tion, it is important to know which diagnostic devices are 
typically available at ATLAS and what kind of data can be 
obtained from them. Figure 3 shows a typical beamline at 
ATLAS. The elements that can be found throughout AT-
LAS beamline are beam profile monitors, electrostatic and 
electromagnetic quadrupoles that form doublets and tri-
plets, steering magnets, dipoles, faraday cups, accelerator 
sections, valves, etc. 

 

 
Figure 3: Beamline of a sub-section of ATLAS located be-
tween the multi-harmonic buncher and the RFQ. 

Therefore, the information that can be obtained from the 
accelerator comes from faraday cup current readings, beam 
profiles and voltage and current settings of beamline ele-
ments. Currently, efforts are being made to have a func-
tional pepper-pot device that will provide more infor-
mation through beam imaging. 

Prior to this project, the settings (concerning the data col-
lection) could be saved automatically using the Control 
System, which uses Vsystem [3]. However, data from the 
faraday cups and beam profile monitors could not be saved 
and access to the devices was not automated. For example, 
to get a beam profile, several buttons had to be manually 
pressed on the control system screen. The system was ca-
pable of saving setting configurations in a data base to load 
old beam tunes into the accelerator but was not prepared 
for any kind of AI work integration. 

After understanding how the Control System works, a 
python package was developed to communicate with it 
from a server that has direct access to the control system 
database, see Fig. 4 for a scheme of this communication 
between systems. The python interface was developed in a 
way so as to make it useful for any AI related work, thus 
allowing it to automatically collect and save beam profiles, 
faraday cup readings and beamline element settings as well 
as changing the settings of the accelerator. 

 
Figure 4: Scheme representing the communication with the 
Control System from an existing server through the new 
python package. 

 Because the idea is to train and deploy AI models with 
the accelerator, an API was developed that enables com-
munication from any computer with the server, and thus the 
Control System, exposing only the required functionalities 

needed when training or deploying a model (see Fig. 5 for 
a representation of this new communication line). This was 
necessary because of the old servers that are still in place 
and are the only ones with direct access to the Control Sys-
tem. This added API layer allows the use of more powerful 
computers and provides the freedom needed for AI in set-
ting up the software environment. 

 
Figure 5: Scheme that represents the communication of a 
computer with the server and Control System through an 
API. 

 Apart from the work done on the data collection with 
the actual machine, a python wrapper was developed 
around a particle accelerator simulation code, TRACK, to 
allow the simulation of the actual machine, thereby gener-
ating a lot of data with different conditions and inputs and 
its integration with AI modelling. The AI training offline 
using a simulation code is key when much time is required 
for training because of the challenges that come with train-
ing directly on the actual machine and the lack of machine 
availability. 

TUNING MODEL 
For beam tuning and machine control, the most fre-

quently used AI techniques are reinforcement learning with 
neural networks [4] and Bayesian optimization using 
Gaussian processes [5]. Many of these tools and platforms 
already exist and are available to implement ML models.  

The ultimate goal for the tuning model is to optimize op-
erations and shorten beam tuning time, and in order to 
achieve this the following steps were proposed: 
• Develop a baseline model to tune/control a small sec-

tion of ATLAS Linac using Simulation Data (see 
Fig. 6).  

 
Figure 6: Scheme for model training using simulation code. 

• Use alternatives approaches such as Bayesian Optimi-
zation with Gaussian Processes and Deep Reinforce-
ment Learning. 

• Test the baseline models on the real machine (see 
Fig. 7). Currently, the project is in this phase.  

 
Figure 7:  Scheme for model training using the accelerator. 
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• Improve models to enhance performance and reduce 
tuning time. 

• Expand the model to other parts of the Linac to finally 
design a tuning model for the whole Linac. 

Bayesian Optimization with Gaussian Processes 
Bayesian optimization was chosen because of its wide 

use and because it combines the complementary strengths 
of human and numerical optimization: life-long learning, 
learning by experience, juggling many things at once, 
quick decisions, estimating its own uncertainty, reaching 
global optimum in a minimum number of steps, etc. This 
method starts with a prior belief regarding the objective 
function and then updates it based on samples drawn from 
the system in order to better approximate the objective 
function. It uses a probabilistic surrogate model for approx-
imating the objective function and acquisition function that 
instructs where to query the system next for a more likely 
improvement. 

 
Figure 8: Scheme of how Bayesian Optimization works. 

For the baseline model, Gaussian Process with a Matérn 
kernel, Gaussian likelihood and expected improvement as 
the acquisition function were used. In addition, the tools 
employed for BO with GP were GPyTorch and BoTorch 
libraries. 

Simulation Data Using the beamline shown in Fig. 2 
and TRACK as the simulation code, different scenarios 
were optimized by BO with GP. The objective is to max-
imize the transmission varying the settings. 

1. Case for 9 quadrupoles (3 doublets and 1 triplet) and 
initial set of configurations randomly selected. The 
model was able to optimize the transmission in around 
30 iterations. The initial set, although randomly gen-
erated, has a couple of configurations with around 
80% transmission, see Fig. 9. 

2. Case for 9 quadrupoles, RFQ and initial set of config-
urations randomly selected. Because the RFQ was 
added, the beam must match the acceptance of the 
RFQ; therefore, the randomly selected configurations 
have very low transmission through the beamline, and 
the model will need much more time to learn how to 
adjust the configurarion to match the RFQ acceptance. 
In the following figure less than 30% transmission is 
achieved after more than 200 iterations, see Fig. 10. 

3. Case for 9 quadrupoles, RFQ and initial set of config-
urations based on historical beam tunes. The initial set 
of configurations was scaled from old beam tunes 
from a historical data base. This provided reasonable 
transmissions for the model to learn from, which 

translated into achiving the maximum transimision 
through the RFQ, around 80% in around 30 iterations, 
see Fig. 11. 

  
Figure 9: Results obtained for case 1. (Left) Maximum 
transmission achieved after a number of iterations. (Right) 
Transmission achieved with different configurations, in 
blue the initial set of points and in orange the proposed can-
didates by the model. 

 
Figure 10: Results obtained for case 2. Maximum transmis-
sion achieved after a number of iterations. 

 
Figure 11: Results obtained for case 3. (Left) Maximum 
transmission achieved after a # of iterations. (Right) Trans-
mission achieved with different configurations, in blue the 
initial set of points and in orange the proposed candidates 
by the model. 

This experiment with simulation data confirms two 
things: first, that it is possible to optimize a beamline in a 
reasonable amount of time using a basic BO model, and 
second, the importance of good initial data in the training 
process when comparing case 2 against case 3. 

Real Data The next step was to test the model with the 
real accelerator.  For this experiment, 3 quadrupoles and 2 
steering magnets were used (the first ones in Fig. 2). There-
fore, there are 7 input parameters, since the 2 steerers have 
both horizontal and vertical component, and the objective 
remains to optimize the transmission after the RFQ. 

1. Case of 14N3+:  the initial set was composed of 29 his-
torical tunes plus 33 random configurations. The re-
sults are shown in Fig. 12. The model was able to con-
verge in a few iterations (~6), although the maximum 
transmission was achieved around 40 iterations which 
was higher than the one achieved that day by the op-
erators represented by the green dashed line in Fig. 12 
left plot. The final optimum configuration was close 
but different from the one obtained by the operators, 
see Fig. 12 right plot. 
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Figure 12: Results obtained for the case of 14N3+. (Left) 
Transmission achieved with different configurations, in 
blue the initial set of points and in orange the candidates 
proposed by the model. (Right) In blue the element settings 
from the tuned beam by the operators and in orange the 
optimum settings proposed by the model. 

2. Case 40Ar9+: the initial set was composed of 29 histor-
ical tunes, the randomly selected configurations were 
not included because they did not provide an addi-
tional value owing to their very low transmissions. 
Similar performance is achieved in this case as in the 
previous one. Still showed slight improvement in 
transmission compared to operator configuration, see 
Fig. 13. 

 
Figure 13: Results obtained for the case of 40Ar9+. (Left) 
Transmission achieved with different configurations, in 
blue the initial set of points and in orange the proposed can-
didates by the model. (Right) In blue the settings from the 
tuned beam by the operators and in orange the optimum 
settings proposed by the model. 

Reinforcement Learning 
Reinforcement Learning was the other approach chosen 

for this study. Reinforcement learning is one of the three 
basic machine learning paradigms, alongside supervised 
learning and unsupervised learning. RL does not require la-
beled data because it learns from interactions between an 
AI agent and its environment. The idea behind using RL to 
tune/control a particle accelerator arises due to the com-
plexity of a particle accelerator. Taking a look at the classic 
control problem (Fig. 14), it might seem like creating a sin-
gle large function would be more difficult than building a 
control system with piecewise subcomponents; however, 
this is where reinforcement learning can help. 

In essence, RL tries to map situations to actions in order 
to maximize a numerical reward. Figure 15 shows the dif-
ferent elements of an RL problem. 

There are different kinds of algorithm that can be ap-
plied, and the one selected as a baseline model was the 
Deep Deterministic Policy Gradient (DDPG) [6], which is 
an actor-critic approach that mixes policy optimization and 
Q-learning method (Fig. 16). Policy optimization methods 

 
Figure 14: Classic control schema. 

 
Figure 15: Scheme of how reinforcement learning works 
and the different elements involved. 

tend to be more stable and reliable, and Q-learning meth-
ods are substantially more sample efficient, although the 
latter cannot work with continuous action space, which is 
the case for accelerators. DDPG works for continuous ac-
tion spaces because the critic only needs to look at the sin-
gle action that the actor took and does not need to try to 
find the best action by evaluating all of them. 

 
Figure 16: Scheme of how the actor-critic approach works 
and the different elements involved. 

The actor is a neural network that tries to take what it 
thinks is the best action given the current state, as seen 
within the policy function method. The critic is a second 
neural network that tries to estimate the value of the state 
and the action that the actor took, as seen within the value 
function method.  

Simulation Data The first scenario to test the perfor-
mance of a DDPG baseline model was to train a model that 
minimizes the beam size by varying 3 electrostatic quadru-
poles based on simulation data using the TRACK code. 
The rewards were defined as a logarithmic function of the 
beam size. Several penalties were added when the settings 
deviated from the given limits. The limits for the quadru-
poles are from 2 kV to 10 kV and the maximum possible 
action is ±0.25 kV. See Fig. 17 for the training (top) and 
prediction (bottom) results. 
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Figure 17: Results obtained for a baseline RL model using 
DDPG and the TRACK Code. The model optimized the 
beam size by varying 3 electrostatic quadrupoles. (Top) 
The results of the training. (Bottom) The results for 5 dif-
ferent predictions starting from 5 different random config-
urations. 

Based on the training results, Fig. 17 top, the model 
learned first the limits of each quadrupole (up to iteration 
#2000), and after that, it learned how to optimize the beam 
size. Regarding the prediction, Fig. 17 bottom, it can be 
seen how the reward converges in each different scenario 
to a value corresponding to a minimum beam size. 

Real Data After developing the simulation RL model, 
the next step was to test the baseline model in the real ma-
chine. In this case, the objective was to maximize the trans-
mission, which was the reward function, through the se-
lected beamline, see Fig. 2 for more detail. The selected 
beamline was composed of 4 electrostatic quadrupoles and 
2 steering magnets. This gives 8 input parameters in total. 
The electrostatic quadrupoles were limited from 3 kV to 
10 kV with a maximum action of ±0.25 kV and the steering 
magnets from –1 A to 1 A and a maximum action of 
±0.25 A. Although the training was never completed be-
cause of limited experiment time with the real machine, 
some interesting conclusions were drawn. See Fig. 18 for 
the training results, in the figure it can be seen that the 
model was be able to learn and identify the limits for al-
most every element of the selected beamline; it needed 
more time to finish learning all the elements’ limits and op-
timize the transmission.  

Moreover, this experiment confirmed the need to train 
the RL model offline using simulation code such as 
TRACK in order to perform only a fine-tune online with 
the machine. However, there are elements, such as the 
RFQ, whose simulations are considerably time consuming 
because of multiple accelerating cells using 3D fields cal-
culations. 

Surrogate Model 
Following the need of an offline training for some ap-

proaches like RL, alongside with the time-consuming sim-
ulation of some elements like the RFQ, the idea of devel-
oping surrogate models to speed up the simulations was 
raised. In recent years it has successfully been shown how 
surrogate models can help in speeding up particle acceler-
ator optimization [7, 8]. 

 
Figure 18: Results obtained for the training of a baseline 
RL model using DDPG in a subsection of ATLAS. This 
subsection was composed of 4 electrostatic quadrupoles 
(top) and 2 steering magnets with both vertical and hori-
zontal components (bottom). 

A surrogate model can be trained on beam simulation 
data to reliably reproduce the physics results in very short 
time; then it could be enhanced with experimental data. ML 
Surrogate Model can be used for virtual diagnostics, offline 
experiment planning, design of new setups, control and 
tuning.  

In order to speed up the RL offline training through the 
RFQ, a surrogate model for the ATLAS RFQ can be used. 
A surrogate model was developed previously using the 
TRACK code [9] and could be used for RL offline training. 
The model was based on neural network architecture. – 
specifically, it was composed of two hidden layers and two 
residual blocks. The main objective was to predict beam 
transmission and output beam Twiss parameters as func-
tions of input beam parameters which include the beam 
emittances and input Twiss parameters. The agreement be-
tween the simulation code and the surrogate model was ex-
cellent and is consistent with the comparison of two beam 
dynamics codes. Therefore, the surrogate model can be 
considered reliable and capable of reproducing the physical 
results, with the big advantage of being ~ 30,000 faster than 
the 3D model in this case. This is exactly what is needed 
for speeding up simulations. 

CONCLUSIONS AND NEXT STEPS 
Bayesian Optimization and Reinforcement Learning can 

be considered as analogous concepts with different termi-
nology and often different settings. BO and RL both are 
useful for high-level tuning and control but excel in differ-
ent regimes. BO seems to be more exploratory – ideal for 
optimizing new settings and situations in the limited data 
regime or slow measurements, while RL needs signifi-
cantly more data to be trained and focusing more on con-
tinuous control. 

 From these preliminary results it seems that BO would 
be more suitable for new tuning configurations and RL for 
continuous control after being pre-trained offline. 

The project has reached several milestones such as auto-
mated data collection, integration of new devices as the 
pepper-pot, integration of AI modelling with the accelera-
tor and the successful training and deployment of a BO 
with GP on a subsection of ATLAS. In addition, the first 
step for a successful RL model has been made in demon-
strating the model’s learning the limits of the elements. 
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However, there is still a lot to do, and the next steps will 
be focused on testing the pepper-pot integration with the 
control system and the modelling, getting more useful data 
from the machine, fine tuning the RL with the machine af-
ter training offline, and improving existing models. To do 
so, other architectures, new type of data such as beam pro-
files and pepper-pot images, the use of surrogate models 
and the incorporation of more Physics information into the 
systems will be considered and included. And last, but not 
least, one of the current challenges encountered during the 
experiments was the possible damage to some devices 
when the beam is lost during model training. A solution is 
being investigating. 
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