Update on the ATLAS Multi-User Upgrade

B. Mustapha Physics Division, ANL

Co-authors: C. Dickerson, J. Nolen and G. Savard

HIAT-2018 Conference October 22-26th 2018, IMP, Lanzhou, China

Progress on ATLAS Multi-User Upgrade

ATLAS One Day Visit, Aug. 30th, 2018

Outline

□ The ATLAS Facility at Argonne and Recent Upgrades

□ The Need for Multi-User Capabilities at ATLAS

□ The Opportunity with Pulsed beams from CARIBU-EBIS

□ Expected Impact: Nuclear Physics & Other Applications

□ Proposed Implementation: Beam Optics & Technical Solutions

Operational Considerations

2

ATLAS: Argonne Tandem Linear Accelerator System

THE UNIVERSITY OF Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne. LLC CHICAGO

HIAT-2018, IMP, October 22-26th, 2018

3

Efficiency & Intensity Upgrade – Completed in 2014

New CW 60 MHz RFQ

- Split-coaxial with trapezoidal modulations \checkmark 7 β ~ 0.77 QWR and 4 solenoids
- Output matcher for axis symmetric beam \checkmark
- In routine operation since early 2013

New SC Module

- - Capable of delivering 17.5 MV
 - ✓ Replaced 3 old SC modules
 - In routine operation since early 2014 \checkmark

 \checkmark New RFQ: Transmission increased from 50% to 80% \rightarrow Efficiency & Reliability \checkmark New SC Module: Acceleration of 10x more intense beams \rightarrow Intensity

Update on the ATLAS Multi-User Upgrade

CARIBU EBIS Charge Breeder – Completed in 2016

EBIS breeder replacing ECR - CB

- ✓ Significantly higher beam purity
- ✓ Higher efficiency than ECR-CB
- ✓ Shorter charge-independent breeding time
- ✓ Pulsed operation → Multi-user possibility

R. Vondrasek Talk, Yesterday

B. Mustapha B. Mustapha CHICAGO Update on the ATLAS Multi-User Upgrade

HIAT-2018, IMP, October 22-26th, 2018

5

AIRIS / RAISOR Separator – Completed in 2018

A Dedicated Inflight RIB Separator

- ✓ Serves all experimental areas
- ✓ Produces wider range of RIB beams
- ✓ Higher intensity RIB beams
- ✓ Higher RIB beam purity

C. Dickerson Talk, Yesterday

Argonne 🕰

The Need for Multi-User Capabilities at ATLAS

- ATLAS is the only US DOE National User Facility for Low-Energy Nuclear Physics Research
 - → Enormous competition for & increased pressure on beam time
- □ Increasing demand for longer experiments (> 1 week)
 - Low intensity RIB beams: from CARIBU and AIRIS
 - Low cross section channels: Heavy elements (FMA and AGFA)
- □ In the past few years, the requested experimental beam time significantly exceeded the ~ 5500 hours ATLAS delivers every year
- □ ATLAS PAC is over-subscribed by a factor of 2-3 ...
- There is a clear need for multi-user capabilities at ATLAS ...

The Possibility with Pulsed EBIS Beams

CHICAGO

The Possibility with Pulsed Beams from CARIBU-EBIS

- ✓ EBIS beam is typically ~1 ms pulse up to 30 Hz repetition rate \rightarrow ~ 3 % DF
- \checkmark DC beam from ECR could be injected into ATLAS in the remaining ~ 97% DF
- \checkmark CARIBU beam masses range from 80 to 170 with Z ranging from 30 to 70
- \checkmark The highest charge they could be ionized to, corresponds to A/q ≥ 4
- ✓ ATLAS accelerates beams with A/q ratios \leq 7
- \checkmark The useful range of A/q ratios for multi-user capability is 4 7
- \checkmark Lower A/q \approx 3 can be achieved with longer breeding time (10 Hz rep. rate)

Sample of Possible Simultaneous Stable and RIBs

	A/Q	Stable ATLAS beams	CARIBU beams
	4.000	²⁰ Ne ⁵⁺ , ²⁸ Si ⁷⁺ , ³⁶ Ar ⁹⁺	⁸⁴ Se ²¹⁺ , ⁸⁸ Kr ²²⁺ , ⁹² Sr ²³⁺ , ¹⁰¹ Mo ²⁵⁺ , ¹⁰⁵ Ru ²⁶⁺
For every stable beam typically produced at ATLAS, there are several RIB candidates	4.143	⁵⁸ Ni ¹⁴⁺	⁸³ As ²⁰⁺ , ⁹⁵ Y ²³⁺ , ¹⁰⁴ Tc ²⁵⁺ , ¹¹² Pd ²⁷⁺ , ¹¹⁷ Cd ²⁸⁺
	4.167	⁵⁰ Ti ¹²⁺	⁸⁸ Br ²¹⁺ , ⁹¹ Rb ²²⁺ , ¹⁰¹ Zr ²⁴⁺ , ¹⁰⁵ Ru ²⁵⁺ , ¹¹⁷ Cd ²⁸⁺
	4.200	⁶³ Cu ¹⁵⁺	⁸⁹ Rb ²¹⁺ , ⁹⁷ Sr ²³⁺ , ¹⁰⁵ Mo ²⁵⁺ , ¹⁰⁹ Rh ²⁶⁺ , ¹¹³ Ag ²⁷⁺
	4.238	⁸⁹ Y ²¹⁺	⁸⁹ Kr ²¹⁺ , ⁹⁷ Sr ²³⁺ , ¹⁰² Zr ²⁴⁺ , ¹¹¹ Rh ²⁶⁺ , ¹¹⁹ Cd ²⁸⁺
	4.308	⁵⁶ Fe ¹³⁺	⁹⁴ Kr ²²⁺ , ¹⁰⁰ Sr ²³⁺ , ¹¹³ Rh ²⁶⁺ , ¹²⁶ Sn ²⁹⁺ , ¹⁴³ Ce ³³⁺
List shown is for A/q within 1%	4.364	⁴⁸ Ti ¹¹⁺ , ⁷⁴ Ge ¹⁷⁺	⁹² Kr ²¹⁺ , ¹⁰⁵ Nb ²⁴⁺ , ¹⁰⁹ Tc ²⁵⁺ , ¹¹⁹ Pd ²⁷⁺ , ¹⁴⁹ Nd ³⁴⁺
	4.375	³⁵ Cl ⁸⁺	¹⁰⁰ Y ²³⁺ , ¹⁰⁹ Tc ²⁵⁺ , ¹²⁷ Sn ²⁹⁺ , ¹³² I ³⁰⁺ , ¹⁵⁹ Gd ³⁶⁺
	4.444	⁴⁰ Ca ⁹⁺ , ¹⁰² Ru ²³⁺ , ¹²⁰ Sn ²⁷⁺	⁸⁹ Br ²⁰⁺ , ¹¹² Rh ²⁵⁺ , ¹³⁹ Xe ³¹⁺ , ¹⁵⁷ Sm ³⁵⁺ , ¹⁵⁶ Eu ³⁵⁺
Accepted range is up to 2%	4.471	⁷⁶ Ge ¹⁷⁺	⁹⁰ Br ²⁰⁺ , ⁹⁹ Sr ²²⁺ , ¹³⁵ Te ³⁰⁺ , ¹²⁸ Cs ³¹⁺ , ¹⁶¹ Gd ³⁶⁺
	4.538	⁵⁹ Co ¹³⁺	⁹¹ Rb ²⁰⁺ , ¹⁰⁵ Zr ²³⁺ , ¹²³ Cd ²⁷⁺ , ¹³¹ Te ²⁹⁺ , ¹⁴⁶ Pr ³²⁺
	4.875	⁷⁸ Kr ¹⁶⁺	⁹³ Υ ¹⁹⁺ , ¹⁰² Mo ²¹⁺ , ¹³² Sn ²⁷⁺ , ¹⁴¹ I ²⁹⁺ , ¹⁶² Eu ³⁴⁺
	4.900	⁹⁸ Mo ²⁰⁺	⁹⁸ Sr ²⁰⁺ , ¹⁰⁸ Mo ²²⁺ , ¹¹⁷ Pd ²⁴⁺ , ¹³⁶ Sb ²⁸⁺ , ¹⁶¹ Sm ³³⁺
	4.923	⁶⁴ Zn ¹³⁺	⁸³ Se ¹⁷⁺ , ⁹³ Y ¹⁹⁺ , ¹¹⁷ Ag ²⁴⁺ , ¹³² I ²⁷⁺ , ¹⁶⁶ Tb ³⁴⁺

More Examples of Possible Simultaneous beams

A/Q	Stable ATLAS beams	CARIBU beams
5.000	⁴⁰ Ar ⁸⁺ , ⁶⁰ Ni ¹²⁺ , ⁹⁰ Zr ¹⁸⁺ , ¹³⁰ Te ²⁶⁺	⁸⁵ Se ¹⁷⁺ , ¹¹⁰ Mo ²²⁺ , ¹²⁴ In ²⁵⁺ , ¹⁴¹ I ²⁸⁺ , ¹⁵⁹ Pm ³²⁺
5.280	¹³² Xe ²⁵⁺	¹⁰⁵ Ru ²⁰⁺ , ¹²⁶ In ²⁴⁺ , ¹³⁷ I ²⁶⁺ , ¹⁵³ Pr ²⁹⁺ , ¹⁶⁵ Tb ³¹⁺
5.565	¹²⁸ Xe ²³⁺	⁹⁵ Υ ¹⁷⁺ , ¹⁰⁵ Τc ¹⁹⁺ , ¹³⁴ Sn ²⁴⁺ , ¹⁴⁴ Xe ²⁶⁺ , ¹⁴⁹ La ²⁷⁺
5.600	⁸⁴ Kr ¹⁵⁺	¹⁰⁰ Nb ¹⁸⁺ , ¹¹¹ Tc ²⁰⁺ , ¹¹⁷ Cd ²¹⁺ , ¹⁴¹ Xe ²⁵⁺ , ¹⁴⁷ La ²⁶⁺
5.643	⁷⁹ Br ¹⁴⁺ , ¹⁰⁷ Ag ¹⁹⁺	⁹⁶ Rb ¹⁷⁺ , ¹⁰⁷ Nb ¹⁹⁺ , ¹¹⁹ Cd ²¹⁺ , ¹³⁵ Te ²⁴⁺ , ¹⁵¹ Nd ²⁷⁺
5.714	⁸⁰ Se ¹⁴⁺	⁹¹ Kr ¹⁶⁺ , ⁹⁷ Zr ¹⁷⁺ , ¹⁰⁹ Ru ¹⁹⁺ , ¹³¹ Sb ²³⁺ , ¹⁴³ Ba ²⁵⁺
6.432	²³⁸ U ³⁷⁺	⁸³ Se ¹³⁺ , ⁹⁰ Kr ¹⁴⁺ , ⁹⁷ Sr ¹⁵⁺ , ¹⁰³ Zr ¹⁶⁺ , ¹⁴¹ l ²²⁺
6.615	⁸⁶ Kr ¹³⁺	⁸⁶ Se ¹³⁺ , ⁹² Rb ²²⁺ , ¹⁰⁰ Sr ²³⁺ , ¹⁰⁵ Zr ²⁴⁺ , ¹⁰⁶ Nb ²⁴⁺
6.667	¹⁸⁰ Hf ²⁷⁺	⁸⁷ Br ¹³⁺ , ⁹⁴ Kr ¹⁴⁺ , ¹⁰⁰ Sr ¹⁵⁺ , ¹⁰¹ Y ¹⁵⁺ , ¹⁰⁷ Nb ¹⁶⁺
6.709	²⁰⁸ Pb ³¹⁺	⁸⁸ Se ¹³⁺ , ⁸⁸ Br ¹³⁺ , ⁹⁴ Rb ¹⁴⁺ , ¹⁰⁰ Y ¹⁵⁺ , ¹⁰⁷ Nb ¹⁶⁺
6.742	²⁰⁹ Bi ³¹⁺	⁸⁷ Se ¹³⁺ , ⁸⁷ Br ¹³⁺ , ⁹⁵ Rb ¹⁴⁺ , ¹⁰² Y ¹⁵⁺ , ¹⁰⁸ Nb ¹⁶⁺
6.792	¹⁹⁷ Au ²⁹⁺	⁸⁹ Se ¹³⁺ , ⁸⁹ Br ¹³⁺ , ⁹⁵ Rb ¹⁴⁺ , ¹⁰² Y ¹⁵⁺ , ¹⁰⁸ Nb ¹⁶⁺
7.000	¹³³ Cs ¹⁹⁺	⁸⁴ As ¹²⁺ , ⁹⁸ Rb ¹⁴⁺ ,

✓ The overlap between Stable and RIB Beams offers a lot of flexibility ...

Update on the ATLAS Multi-User Upgrade

Scope of the Proposed Multi-User Upgrade

Potential Impact / Gain from ATLAS MUU

CHICAGO

Potential Impact / Gain based on PAC-Approved Experiments with CARIBU beams available

We analyzed PAC-approved experiments that ran during the first GRETINA campaign for potential overlap between stable beams and CARIBU beams

□ Analysis procedure and criteria for beam overlap

- Source: One beam from ECR-2 & One beam from CARIBU
- \circ Mass-to-charge ratio: Both beams with A/q > 3.5
- Energy: One beam at Booster & One beam at ATLAS energy (only Booster energy beams can run in Area–II)
- Experimental equipment: Area-II has limited operational equipment
 Added hypothetical case: GRETINA located in Area-II

Findings

✓ With a gamma ray detector (GT/GS) located in Area-II, the potential overlap is ~ 40%, limited only by the approved days of CARIBU beams

Nuclear Physics Programs to Benefit from ATLAS MUU

- Heavy element program (Z >100) (AGFA separator + Digital GS)
- Decay spectroscopy & super-heavy program (AGFA + DSSD)
- Astrophysics capture reaction program (AIRIS + MUSIC)
- ✓ High resolution spectroscopy of nuclei (CARIBU and AT-TPC)
- ✓ Coulomb excitation studies (CARIBU + GRETINA & CHICO-II)
- ✓ Single particle structure studies (CARIBU + HELIOS)
- ✓ High resolution single particle structure (AIRIS + HELIOS)
- Most / All of these programs require long experimental runs, limited at this time but would run with the ATLAS-MUU
- More beam time from the ATLAS-MUU will help these programs reach their full potential.

Potential Applications with the ATLAS MUU!

✓ Material Irradiation at PII energies ~ 1 MeV/u

- Fission fragment like beams
- Stable or from CARIBU
- Good overlap & Flexibility

✓ Isotope Production at Booster / ATLAS energies

- Target Enclosure for Isotope Production
- High current light ion beams
- Limited overlap with CARIBU beams

Radiobiology Studies at Booster / ATLAS energies

- Study radiobiological effects of different ion beams: proton, helium, carbon, ... at the Bragg peak for comparative ion beam therapy
- Also, limited overlap with CARIBU beams

B. Mustapha THE UNIVERSITY OF CHICAGO CHICAGO CHICAGO

Requirements & Proposed Implementation

Requirements for Two-Beam Injection

Pulsed injection in the LEBT

- Properly combine in time two beams with close A/q ratios
- Maximize the overlap in phase space Achromatic beam transport & high order corrections
- The machine tuned for the average A/q to maximize acceptance of both beams.
- Similar to two-charge state acceleration in FRIB, except that the two beams are coming from different platforms which should be set to match the required velocity at the RFQ for both beams

Requirements for Beam Extraction after Booster

Pulsed extraction after the Booster

- ✓ Switch either radioactive or stable beam to either Area II or Area III&IV
- ✓ Fit into the available space (significant constraint)
- ✓ Accommodate existing re-buncher close to center of beam line
- ✓ Accommodate existing beam diagnostics
- ✓ Compatible with potential future upgrades

Proposed Implementation

1) Modification to the Front-end / Injection

2) Extraction added after the Booster section

Update on the ATLAS Multi-User Upgrade

Example of Combining Two Beams in the LEBT

 2 electrostatic sextupoles are needed to maximize the two beam overlap and provide high transmission through ATLAS

Booster Switchyard: Optimum Solution

THE UNIVERSITY OF CHICAGO U.S. DEPARTMENT OF U.S. DEPARTMENT OF U.S. DEPARTMENT OF U.S. Department of Energy laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne. LLC

Booster Switchyard: Beam Optics Solution

Beam to **ATLAS** through original beam line, a compact triplet is inserted right after Booster

Beam to **Area II** through a new chicane made of a kicker, a septum and 3 regular magnets

Key Components - Preliminary Design

Key Components for the Multi-User Upgrade

- Pulsed electrostatic deflector
- 2 electrostatic sextupoles

- Compact triplet
- Pulsed kicker-magnet ~ 5°
- Septum-magnet ~ 10°

Pulsed Electrostatic Deflector to Combine Beams

Existing Design – Already in use on EBIS platform

- Merge 30 keV/u stable and radioactive ion beams
- Electrode Voltage +/- 20 kV
- High voltage Belhke switches available for pulsing

Electrostatic Sextupoles for better Beam Overlap

- Mismatch factor shows that A/q difference of 1% would double the vertical emittance without sextupole correction
- Two sextupoles are required to correct aberrations and maximize the overlap of the two beams

Two electrostatic sextupoles in the LEBT to maximize overlap and provide high transmission of both beams

Update on the ATLAS Multi-User Upgrade

Compact Triplet Specs & Preliminary Design

Compact Triplet Specs

Table 3: Specifications for the compact quadrupole triplet

Parameter	Value	Unit
Effective Length of First & Last		
lenses	20	cm
Effective Length of Middle lens	40	cm
Spacing between Lenses	10	cm
Triplet Physical Length	1	m
Pole-tip radius	4	cm
Peak Field at Pole-tip	0.5	Т

Possible Design of A Compact Triplet

Kicker Magnet - Design Requirements

Main Requirements

- ✓ Should be able to kick a 6.5 MeV/u q/A=1/7 beam by at least 5° → 0.5 T
- ✓ Rise and fall time of ~ 1 ms or less with 30 Hz rep-rate
- ✓ Two operation modes: 1) 3% ON, 97% OFF and vice versa \rightarrow ~ DC

Main Consequences

- ✓ For B ~ 0.5 Tesla, It can't be a Ferrite, It has to be Iron/Steel
- ✓ Very thin laminations required to reduce core losses from eddy currents
- Power supply should operate in pulsed and DC modes
- Magnets with Similar Parameters: Very Few ...
- LANL IPF kicker (4 ms rise/fall, didn't work well, significant losses …)
 RAL ISIS kicker (12 ms rise/fall, successful, built by Danfysik …)

. . .

Preliminary Kicker Design - Danfysik

Magnet Design

- Curved Magnet Recommended
- 3 Designs \rightarrow Racetrack is Best
- 2 Materials → NO20 is best
- Yoke Cooling Required
- Thin steel vacuum chamber recommended

- 3-Stage PS for 0.5 ms and 10⁻⁴
- 1st: 0 to 99% Imax in 0.3 ms with 0.5 % error
- 2nd: 99% to 100% in 0.2 ms with 10⁻⁴ error & transition to flat-top
- 3rd: Low voltage current regulated

HIAT-2018, IMP, October 22-26th, 2018

30

Septum Magnet Specs & Preliminary Design

DC Septum Specs

Table 1. Specifications for the septum magnet					
Parameter	Value	Unit			
Deflection Angle	7.5	deg			
Peak Magnetic Field	0.75	Т			
Bend Radius	3.5	m			
Septum Thickness	2	cm			
Magnet Full Gap	4	cm			
Maximum Physical Length	60	cm			
Effective Field Length	46	cm			
Width of good field area	7	cm			
Field Uniformity over Good Field Area	< 10 ⁻³				
Max. field seen by non-deflected beam	< 5	Gauss			

Table 1: Specifications for the sentum magnet

Possible Design of A Thick Septum

Operational Considerations

CHICAGO CEPERTINE of Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, ILC.

Operational Considerations

- \Box Constraints: Two experiments \rightarrow Two sets of requirements
 - Beam species with compatible A/q (Minimum ~ 4, range: ~ 2%)
 - Beam energies: Area-II beam energy may affect ATLAS beam energy
 - Equipment: Experimental areas must be appropriately equipped
- □ Flexibility:
 - For every stable beam, there is plenty of compatible CARIBU beams
 - For every CARIBU beam, the charge state from EBIS could be selected (similar intensity) to overlap with the closest stable beam
 - Beam energies: If Area-II energy is fixed, ATLAS section can be set to independently accelerate / decelerate the second beam

PAC Approval & Scheduling Process

- Approval by PAC should consider multi-user capability \rightarrow long runs
- Simultaneous experiments will be scheduled based on compatibility & approved priority

Operational Considerations: Beam Tuning

□ Two Beam Tuning: One from ECR & One from CARIBU-EBIS

- CARIBU beams are being tuned using a guide beam with similar A/q
- $\circ~$ Stable beam will be used for tuning all lines, because it has a close A/q
- CARIBU beam will be used to verify the tune to the designated target
- Possible issues / restrictions:
 - o Beam stripping can only take place after beam separation
 - Two sources operating, less time for beam development
 - \circ $\,$ Two beams on targets, limited accessibility to other areas
- Possible solutions: Infrastructure updates
 - o Better instrumentation: Diagnostics & interloks
 - Remote control and accessibility
 - o Automation

Recent Progress & Future Steps ...

□ Recent progress ...

- The proposed upgrade has been approved in principle by DOE
- Project expected to start next year following a review process

□ Currently working on / considering ...

- Add chopper to ECR-II line to better define the stable beam profile before combining with CARIBU beam.
- Weak beam diagnostics and optimized tuning for CARIBU beams
- New configuration of beam diagnostics after the Booster for MUU
- Study enhanced Area-II energy flexibility from a single cavity cryostat
- Ensure compatibility with potential future upgrades ...

Summary

- The proposed ATLAS Multi-User Upgrade will significantly enhance the capabilities of the facility
- The additional beam time expected from this upgrade will boost the delivery of the nuclear physics program and open-up new opportunities for other applications
- We have developed a design concept and technical solutions for the proposed multi-user upgrade
- Feasibility of most critical components of the upgrade has been proven
- The proposed upgrade has been approved and expected to start next year ...

