

Stochastic Cooling Simulation of Rare Isotope Beam and its Secondary Beam

Xuejing Hu Institute of Modern Physics, Chinese Academy of Sciences

14th International Conference on Heavy Ion Accelerator Technology

- Introduction to HIAF Stochastic Cooling system
- Longitudinal Stochastic Cooling simulation
- Combination of TOF and Filter Cooling simulation
- Stochastic Cooling simulation of secondary beam

Summary

Introduction to HIAF Stochastic Cooling system

- Longitudinal Stochastic Cooling simulation
- Combination of TOF and Filter cooling simulation
- Stochastic Cooling simulation of secondary beam

Layout of HIAF

SRing: Spectrometer Ring

mass measurements of short-lived exotic nuclei, Rare Isotope Beam (RIBs) experiments, the internal target experiments.

Purpose and requirements of the stochastic cooling on the SRing – Nuclear physics

- Precooling of the rare isotope beams
- Beam energy: 625 MeV/u-840 MeV/u (β: 0.8-0.85)
- Number of particles: <1.0e5
- Mass number: 100-200
- Atomic number: 40-80
- Lifetime: seconds
- Before cooling: $\varepsilon_{\rm H} = 120 \,\pi \,\text{mm}\,\text{mrad}, \,\varepsilon_{\rm V} = 40 \,\pi \,\text{mm}\,\text{mrad}, \\ \Delta p/p = \pm 4.0 \text{e-}3 \,(\pm 3\sigma)$
- After cooling: $\varepsilon_{H,V}=6.25 \pi \text{ mm mrad}, \Delta p/p=\pm 3.6\text{e-}4 (\pm 3\sigma)$ $\varepsilon_{H,V}=1.25 \pi \text{ mm mrad}, \Delta p/p=\pm 6.0\text{e-}5 (1 \sigma)$
- Cooling time < 1.2s

Below 400 MeV/u (β: 0.71)

Purpose and requirements of the stochastic cooling on the SRing – Nuclear physics

DR experiment with the radioisotopes

$6.25 \times 10^{9} \, {}^{238}\text{U}^{34+} \rightarrow \text{C-target} \rightarrow {}^{235,237}\text{U}^{91+,89+}$

Initial energy (MeV/u)	Thickness of the target	235U			²³⁷ U		
		Output energy (MeV/u)	Ion production rate(pps)		Output energy	Ion production rate(pps)	
			H-like	Li-like	(MeV/u)	H-like	Li-like
500	3g/cm ²	171	2.34e6	1.61e6	173	2.25e6	1.45e6
600		311	5.53e6	5.08e5	313	5.19e6	4.56e5
700		433	6.87e6	2.05e5	434	6.39e6	1.89e5
800		546.5	7.18e6	9.69e4	548.5	6.67e6	8.95e4
900		656.5	6.96e6	4.92e4	658	6.47e6	4.55e4
1000		764	6.51e6	2.7e4	765	6.03e6	2.46e4
1100		869	5.96e6	1.52e4	870	5.53e6	1.39e4
600	4g/cm ²	187	3.02e6	1.57e6	190	3.06e6	1.37e6
700		330	6.48e6	4.94e5	333	6.07e6	4.41e5
800		454.5	7.82e6	1.98e5	456.5	7.24e6	1.84e5
900		570	7.99e6	9.54e4	572	7.42e6	8.6e4
1000		681	7.64e6	4.64e4	683	7.09e6	4.16e4
1100		789.5	7.13e6	2.58e4	791.5	6.61e6	2.38e4

Normal stochastic cooling operation mode on SRing

Layout of the PU and kicker of SRing stochastic cooling and Momentum acceptance

Energy 400 MeV/u bandwidth reduced to 0.6-1.2GHz

Introduction to HIAF Stochastic Cooling system

Longitudinal Stochastic Cooling simulation

- Combination of TOF and Filter cooling simulation
- Stochastic Cooling simulation of secondary beam

Simulation parameters of SRing Longitudinal Stochastic Cooling

Ion	132 Sn ⁵⁰⁺		
Kinetic energy	740 MeV/u, 400 MeV/u		
Total number of RI	1.0e5, 1.0e8		
Initial ∆p/p	\pm 4.0e-3 Uniform distribution (TOF Cooling)		
	\pm 7.0e-4 Gauss distribution (Filter Cooling)		
γt	3.317		
Local yt	2.568		
Bandwidth	0.6-1.2 GHz		
Number of slot rings for Pickup/Kicker	64/128, 112/224		
Number of faltin for Pickup/Kicker(0.75 m)	2/4		
Temperature	300 K		
Distance from Pickup to Kicker	75.25 m		
Dispersion at Pickup/Kicker	0.0 m		
Circumference	273 m		

Longitudinal Stochastic Cooling Simulation – TOF cooling

Longitudinal Stochastic Cooling Simulation – Filter cooling

Electrode structure proposed for SRing stochastic cooling

Faltin structure 0.75 m

Longitudinal Stochastic Cooling Simulation – TOF cooling

- Introduction to HIAF Stochastic Cooling system
- Longitudinal Stochastic Cooling simulation
- Combination of TOF and Filter cooling simulation
- Stochastic Cooling simulation of secondary beam

Combination of TOF and filter cooling simulation

Note: For TOF cooling combined with filter cooling, the switch time should be taken into consideration. By simulation, the switch time from TOF to filter cooling should be larger than 0.37 s.

Combination of TOF and filter cooling simulation

Combination of TOF and filter cooling simulation

- Introduction to HIAF Stochastic Cooling system
- Longitudinal Stochastic Cooling simulation
- Combination of TOF and Filter cooling simulation
- Stochastic Cooling simulation of secondary beam

Stochastic cooling of primary beam

In the TOF cooling process(400 MeV/u), the contaminated ions of $7.5e-4 \le |r| \le 1.5e-2$ $(r=\Delta(m/q)/(m/q))$ could be clearly scraped out after 1.0 sec cooling.

- Introduction to HIAF Stochastic Cooling system
- Longitudinal Stochastic Cooling simulation
- Combination of TOF and Filter cooling simulation
- Stochastic Cooling simulation of secondary beam

Summary

□ Stochastic cooling would be used to provide a fast precooling of radioactive fragment beams with a large emittance.

TOF cooling has the maximum acceptance among the various methods, and it will be used for SRing longitudinal cooling for beams with large momentum spread. Then notch filter cooling will be switched on once the momentum spread is small enough to fit into the filter cooling acceptance.

For the lower energy beam, 400 MeV/u, the acceptance of TOF cooling is smaller than the beam momentum spread ($\Delta p/p=\pm 0.4\%$) if the cooling bandwidth is 1-2 GHz. So we changed bandwidth to 0.6-1.2 GHz where the beam spread fits inside the acceptance of the TOF cooling system.

□ For lower energy or less particle number, cooling is little bit faster, the equilibrium value is relatively smaller., and the microwave power is lower too.

For the electrode structure, cooling would be better if the electrode structure is slot ring with cell number PU/KI=112/224.

- For TOF cooling combined with filter cooling, the optimal switch time from TOF to filter cooling is 0.37 s when the kinetic energy is 400 MeV/u.
- Tof cooling is able to cool secondary beam for special cases but at the expense of losing some particles after cooling.
 Both TOF and filter cooling could be able to scrape out the secondary beam in a range of mass-to-charge spread.

Thanks for your attention !

14th International Conference on Heavy Ion Accelerator Technology