

Investigations on KONUS beam dynamics using the pre-stripper drift tube linac at GSI

Chen Xiao

GSI Helmholtzzentrum für Schwerionenforschung GmbH Darmstadt, Germany

Outline

- Overview
- UNILAC introduction
- KONUS beam dynamics design
- Single-particle tracking through the IH-DTL
- TTF parameter calculation using tracking method
- Multi-particle tracking through the IH-DTL
- Conclusion

UNIversal Linear ACcelerator

Design parameters after upgrade

ion A/q	≤ 8.5, i.e. ²³⁸ U ²⁸⁺	
beam current (pulse) * A/q	1.76 (0.5% duty cycle)	emA
input beam energy	2.2	keV/u
output beam energy	3.0 - 11.7	MeV/u
normalized total output emittance, horizontal / vertical	0.8 / 2.5	mm mrad
beam pulse duration	≤ 1000	μs
beam repetition rate	≤ 10	Hz
operating frequency	36.136 / 108.408	MHz
length	≈ 115	m

KONUS beam dynamics design

A Hamiltonian can be constructed describing the particle motion in phase space as

$$H = -\frac{\pi w^2}{\beta_s^3 \gamma_s^3 \lambda} - \frac{q E_0 T_n(\beta)}{mc^2} (\sin \psi - \psi \cos \psi_s),$$

 mc^2

since ψ and w are variables canonically dependent on s

$$\frac{d\psi}{ds} = -\frac{2\pi w}{\beta_s^3 \gamma_s^3 \lambda}, \quad \frac{dw}{ds} = \frac{qE_0 T_n(\beta)}{mc^2} (\cos \psi - \cos \psi_s),$$

For simplicity this term is normalized to the rest energy of the particle under study

IH-cavities with KONUS (combined 0-degrees structure)

IH-DTL design at UNILAC

Table 1

GSI pre-stripper IH-DTL parameter list.

Parameter	Value
Frequency Design particle	$\frac{36.136}{^{238}U^{4+}}$ MHz
Design intensity	15 emA (electric)
Energy range	0.12 to 1.4 MeV/u
Number of cavities	2
Total length	20 m
Number of sections	4(IH-1)+2(IH-2)
Norm. exit rms-emittances	0.1 mm mrad, 0.45 keV/u ns

Electric field expansion

Field map inside a gap is described by Fourier–Bessel series

$$\begin{split} E_z(z,r,t) &= -\cos(\omega t + \psi_0) \sum_{m=1}^M E_m I_0(\mu_m r) \sin\left(\frac{2\pi mz}{\Gamma}\right), \\ E_r(z,r,t) &= \cos(\omega t + \psi_0) \sum_{m=1}^M \frac{2\pi mE_m}{\mu_m \Gamma} I_1(\mu_m r) \cos\left(\frac{2\pi mz}{\Gamma}\right), \\ B_\theta(z,r,t) &= \sin(\omega t + \psi_0) \sum_{m=1}^M \frac{2\pi E_m}{\mu_m \lambda c} I_1(\mu_m r) \sin\left(\frac{2\pi mz}{\Gamma}\right), \end{split}$$

and

$$a_m = \frac{2\pi}{\lambda} \sqrt{\left(\frac{m\lambda}{\Gamma}\right)^2 - 1}, \quad \Gamma = l + 2g + d, \quad E_0 = \frac{U}{g},$$

First section of IH-1, five rf-gaps

$$\begin{split} (\psi_1, \psi_2, \dots, \psi_5)_{Analytical} &= 14.5^\circ, 9.4^\circ, 4.5^\circ, -0.2^\circ, -4.6^\circ. \\ (\psi_1, \psi_2, \dots, \psi_5)_{Lorasr} &= 14.5^\circ, 9.1^\circ, 3.9^\circ, -1.0^\circ, -5.7^\circ. \\ (\psi_1, \psi_2, \dots, \psi_5)_{Beampath} &= 14.5^\circ, 9.1^\circ, 4.0^\circ, -0.9^\circ, -5.6^\circ. \end{split}$$

Comparison of simulation results

Compared with results from LORASR, simulations with BEAMPATH deliver more reliable results.

20

30

40

10

30

0.3

0.0

0

9

-30 -30

output energies: 1.3837 MeV/u and 1.3992 MeV/u

50

cell number [dimensionless]

60

voltage [MV] 0.6

0 phase [deg] -60 phases, scenario-0 phases, scenario-1 -90 S2 S1 S3 S4 **S**1 S2 IH-1 IH-2 1.2 0.9

0.6

30

cell number [dimensionless]

output energies: 1.3837 MeV/u and 1.4010 MeV/u

voltages, scenario-0

voltages, scenario-1

90

100

80

70

TTF calculation using filed-map tracking FAR FAR

Dr. Chen Xiao - HIAT2018 Lanzhou

correct energy injection

Gap	RF-phase	Effective voltage	TTF	Field map
1/2	-89.96/-90.01	0.2571/0.2551	0.849/0.845	CST
1/2	-89.98/-89.98	0.2630/0.2609	0.871/0.861	BEAMPATH
1/2	-90.01/-90.08	0.2734/0.2709	0.902/0.899	Rectangular
lower energy injection	n (1% lower)			
Gap	RF-phase	Effective voltage	TTF	Field map
1/2	-75.72/-75.66	0.2566/0.2551	0.848/0.845	CST
1/2	-75.73/-75.65	0.2627/0.2608	0.870/0.867	BEAMPATH
1/2	-75.76/-75.78	0.2738/0.2707	0.900/0.899	Rectangular
higher energy inject	ion (1% higher)			
Gap	RF-phase	Effective voltage	TTF	Field map
1/2	-104.01/-104.18	0.2575/0.2552	0.850/0.846	CST
1/2	-104.02/-104.14	0.2634/0.2609	0.872/0.867	BEAMPATH
1/2	-104.05/-104.21	0.2747/0.2711	0.902/0.899	Rectangular

More detail information can be found in Nuclear Inst. and Methods in Physics Research, A 887 (2018) 40-49

- As part of the pre-stripper injector HSI, the IH-DTL has been designed in the 1990s applying KONUS beam dynamics. KONUS allowed for the desired high accelerating gradients compared to conventional βλ-DTLs with constant rf-phases. Particle motion along KONUS DTLs is very sensitive to the actual rf-phase and effective voltage at each cell.
- For cavities comprising many gaps small rf-phase errors being neglected may harm further stable acceleration along subsequent cavities and lower the precision of the predicted DTL output energy. The mentioned inconsistencies cannot be modeled by *z*-codes as PARTRAN for instance.
- Self-consistent beam dynamics of this IH-DTL optimized with the *t*-code BEAMPATH (scenario-2) can be reproduced very well with PARTRAN using realistic TTF parameters, measured gap voltages, and upgraded rf-phases taking into account unequal lengths of front and end half tubes.

Thank you !