

GFS-2 - The New Gas-filled Separator for Super-Heavy Elements in JINR. A Guided Walk through the Genesis of the Project from First Thoughts to Completion

<u>W. Beeckman</u>, S. Antoine, V. Dumilly, F. Forest, P. Jehanno, P. Jivkov, M.J. Leray, X. Milpied, C. Nignol, O. Tasset SIGMAPHI, F-56000 Vannes, France

A.G. Popeko, V.K. Utyonkov

Flerov Laboratory of Nuclear Reactions, JINR, RU-141980 Dubna, Russia

With special thanks to our co-workers from the « 100 ton » company, for their efficiency and the pleasure to work with them during the installation

Layout inside SHE factory

JINR

Dubna

W.Beeckman – HIAT 2018– Lanzhou – October 2018

Super Heavy Elements

WHY?

Super Heavy Elements

HOW ?

Schematics of a

separator

Schematics of a

separator

Beam from DC280

Window or differential pumping

Beam from DC280

- Ø 480, 1500 rpm synchronous,
- e-beam & optical diagnostics
- Water & gas cooled

- Ø 480, 1500 rpm synchronous,
- e-beam & optical diagnostics
- Water & gas cooled

Separator

Contamination

Many charge states

Large emission angle

Contamination

Many charge states

Large emission angle

Improve rejection Bending angle dispersion

Contamination

Many charge states

Large emission angle

Improve rejection Bending angle dispersion

Separator

Contamination

Many charge states

Large emission angle

Improve rejection Bending angle dispersion

Separator

Promote mechanisms that narrow the charge state distribution

What are we fighting for?

Reaction products in magnetic separator suffer from

Contamination

Many charge states

Large emission angle

Improve rejection Bending angle dispersion

Separator

Promote mechanisms that narrow the charge state distribution

What are we fighting for?

Reaction products in magnetic separator suffer from

Contamination

Many charge states

Improve rejection Bending angle dispersion

Separator

Promote mechanisms that narrow the charge state distribution Increase acceptance/transmission Optics Large apertures Focusing Optimized chambers

Large emission angle

What are we fighting for?

Reaction products in magnetic separator suffer from

Contamination

Many charge states

Improve rejection **Bending angle** dispersion

Separator

Promote mechanisms that narrow the charge state distribution

Increase acceptance/transmission Optics Large apertures Focusing **Optimized chambers**

Large emission angle

Large acceptance **Gas-filled Separator**

W.Beeckman – HIAT 2018– Lanzhou – October 2018

... and last but not least BE PATIENT

Formation of SHE is a very rare event (pb) At 1pµA of ⁴⁸Ca 1nb -> 100 events/h 1pb -> 1 event/week 1fb -> 1 event/20 years

"On 9 October 2006, the researchers announced that they had indirectly detected a total of 3 (possibly 4) nuclei of oganesson-294 (1 or 2 in 2002 and 2 more in 2005) produced via collisions of californium-249 atoms and calcium-48 ions" Excerpt from the Wikipedia webpage on Oganesson https://en.wikipedia.org/wiki/Oganesson

Expectations

 DQ_hQ_v layout : dipole gap 58mm, quad diameter 100mm

asap

Large exit

pole edge

angle

MUST IMPROVE

TRANSMISSION

0.2

0.0

1.5

20

Distance /

2.5

15% loss

in quads

30

3.5

05 10

40% loss

in dipole

Transmission or Resolution ?

VHHV Transmission + Resolution -Separator

VHVH Transmission – Resolution + Spectrometer

Expected gain

Reaction	Transmission		
²⁴⁴ Pu(⁴⁸ Ca,3n) ²⁸⁹ Fl	60 %		
²⁴⁴ Pu(⁵⁸ Fe,4n) ²⁹⁸ 120	75 %		

¹⁴

GFS2 among some gas-filled separators

Separator	DGFRS	GARIS-II	RITU	BGS	TASCA	SHANS	GFS-II
	FLNR	RIKEN	JYFL	LBNL	GSI	IMP	FLNR
Location	Dubna	Wakô	Jyväskylä	Berkeley	Darmstadt	Lanzhou	Dubna
	Russia	Japan	Finland	USA	Germany	China	Russia
Configuration	$\mathrm{DQ}_{\mathrm{h}}\mathrm{Q}_{\mathrm{v}}$	$Q_v DQ_h Q_v D$	$Q_v DQ_h Q_v$	Q _v D _h D	DQ _h Q _v	$Q_v D Q_v Q_h$	Q _v DQ _h Q _v D
Deflection angle	23º	30º+7º	25⁰	25°+45≌	30º	52 <u>°</u>	30º+10º
Bρ (max/T·m)	3.1	2.46	2.2	2.5	2.4	2.88	2.25
Length (m)	4	5.06	4.8	4.6	3.5	6.5	6.3
Dispersion (mm/% Bp)	7.5	19.3	10	20	9	7.3	9.7
					High	High	
					Transmission	Resolution	
					Mode	Mode	

From initial spec to final layout through various iterations

. . .

gives rise to important questions

It is desirable but is it technically feasible ?

Is it economically OK ? Investment costs AND running costs Can I trade this for that ? I can improve. Is it worth ?

The big guy -30° D1

D1 General

Factory assembly

Each part must be less than 10 tons

Assembly on site

Hall probe measurement

W.Beeckman - HIAT 2018 - Lanzhou - October 2018

D1 parameters

Beam free aperture	120	mm
Magnet gap	132	mm
Curvature radius	1800	mm
Entrance face angle	-7 (-2)	0
Exit face angle	-44 (-50)	o
Deviation angle	31.5	0
Effective length	1007	mm
Good Field region	440	mm

Max field	1.8	Т
Max current	919	А
# turns (1 coil)	120	
Max current density	7.4	A/mm²
Magnet power	139	kW
Yoke weight	25.7	ton
Copper weight	1.24	ton

D1 design (1)

Large exit angle makes a conventional structure very difficult. Entrance and exit faces side by side Change on one generate change on the other -> joint optimization Complex profile on entrance face

D1 coils

W.Beeckman – HIAT 2018– Lanzhou – October 2018

W.Beeckman - HIAT 2018 - Lanzhou - October 2018

Magnet + chamber : 27.5 tons URES (mm) 0.133 Deformation < 0.2 mm0.122 0.111 0.100 Stress < 130 Mpa (req. <235 Mpa) 0.089 0.078 0.067 0.056 0.044 0.033 0.022 0.011 von Mises (N/mm 2 (MPa) 129.587 118.788 107.990 97.191 86.392 75.593 64.794 53.995 43.196 32.397 21.598 10.799 0.000

D1 Stand

Quadrupoles

W.Beeckman - HIAT 2018- Lanzhou - October 2018

Quadrupoles parameters

	Q1	Q2/Q3	
Bore diameter	150	300	mm
Iron length	420	520	mm
Effective length	456.6	600	mm
Max gradient	13.2	5.34	T/m
Max current	450	362	A
# turns (1 coil)	88	138	
Max current density	6.35	6.6	A/mm²
Magnet power	28.2	61.6	kW
Yoke weight	2.07	6.65	ton
Copper weight	0.39	0.68	ton

W.Beeckman - HIAT 2018- Lanzhou - October 2018

W.Beeckman - HIAT 2018- Lanzhou - October 2018

W.Beeckman – HIAT 2018– Lanzhou – October 2018

Q2/Q3 Vacuum chamber

W.Beeckman – HIAT 2018– Lanzhou – October 2018

Gap	132 mm
Deflection angle	100
Radius of curvature	1.8 m
Maximum field	1.8 T
Face pole rotation angle	00
Rear pole rotation angle	100

TT

Differential pumping system

W.Beeckman - HIAT 2018- Lanzhou - October 2018

2 configurations

- Allows window-less operation
- Tolerate intense heavy ion beams
- Gas contributes to target cooling
- As all recent gas-filled separators TASCA, GARIS-II, SHANS

Pressure profile (case of He)

	P1	2.00E+00	P2	1.04E-01	Р3	6.47E-04	mbar
	P2 goal	1.00E-03	P3 goal	1.00E-03	P4 goal	1.00E-06	mbar
Diaphragm diameter		24		24		24	mm
Diaphragm length		0.25		0.4		0.4	m
				4.22E+0			
C=1.22 10 ⁻⁴ *(D ³ /L)		6.75E+00		0		4.22E+00	l/s
P1-P2		2.00E+00		1.03E-01		6.46E-04	mbar
P1-P2		1.97E-03		1.01E-04		6.37E-07	atm
Q=C*(P1-P2)		1.33E-02		4.27E-04		2.69E-06	l/s
pumping speed He		130		670		1200	l/s
P2=Q/pumping speed		1.02E-04		6.38E-07		2.24E-09	atm
	P2	1.04E-01	Р3	6.47E-04	P4	2.27E-06	mbar

W.Beeckman - HIAT 2018 - Lanzhou - October 2018

Dubna

Differential pumping (1)

- Allows window-less operation
- Tolerate intense heavy ion beams
- Gas contributes to target cooling
- As all recent gas-filled separators TASCA, GARIS-II, SHANS

Large tubes (ϕ 102): standard pumping

Pressure profile (case of He)

	P1	2.00E+00	P2	1.04E-01	Р3	6.47E-04	mbar
	P2 goal	1.00E-03	P3 goal	1.00E-03	P4 goal	1.00E-06	mbar
Diaphragm diameter		24		24		24	mm
Diaphragm length		0.25		0.4		0.4	m
				4.22E+0			
C=1.22 10 ⁻⁴ *(D ³ /L)		6.75E+00		0		4.22E+00	l/s
P1-P2		2.00E+00		1.03E-01		6.46E-04	mbar
P1-P2		1.97E-03		1.01E-04		6.37E-07	atm
Q=C*(P1-P2)		1.33E-02		4.27E-04		2.69E-06	l/s
pumping speed He		130		670		1200	l/s
P2=Q/pumping speed		1.02E-04		6.38E-07		2.24E-09	atm
	P2	1.04E-01	Р3	6.47E-04	P4	2.27E-06	mbar

Differential pumping (1)

- Allows window-less operation
- Tolerate intense heavy ion beams
- Gas contributes to target cooling
- As all recent gas-filled separators TASCA, GARIS-II, SHANS

Diaphragms (ϕ 24) : differential pumping

Pressure profile (case of He)

	P1	2.00E+00	P2	1.04E-01	Р3	6.47E-04	mbar
	P2 goal	1.00E-03	P3 goal	1.00E-03	P4 goal	1.00E-06	mbar
Diaphragm diameter		24		24		24	mm
Diaphragm length		0.25		0.4		0.4	m
				4.22E+0			
C=1.22 10 ⁻⁴ *(D ³ /L)		6.75E+00		0		4.22E+00	l/s
P1-P2		2.00E+00		1.03E-01		6.46E-04	mbar
P1-P2		1.97E-03		1.01E-04		6.37E-07	atm
Q=C*(P1-P2)		1.33E-02		4.27E-04		2.69E-06	l/s
pumping speed He		130		670		1200	l/s
P2=Q/pumping speed		1.02E-04		6.38E-07		2.24E-09	atm
	P2	1.04E-01	P3	6.47E-04	P4	2.27E-06	mbar

Differential pumping (2)

Mechanically sound

Power supplies

W.Beeckman – HIAT 2018– Lanzhou – October 2018

Power supplies

W.Beeckman - HIAT 2018- Lanzhou - October 2018

Installation June 05th-14th 2018

W.Beeckman - HIAT 2018 - Lanzhou - October 2018

No crane! So what? (1)

W.Beeckman - HIAT 2018 - Lanzhou - October 2018

No crane! So what? (1)

W.Beeckman - HIAT 2018- Lanzhou - October 2018

No crane! So what? (2)

No crane! So what? (3)

No crane! So what? (4)

Alignment

• Red ring 2.5" targets

Polyworks software

•

Leica laser tracker AT401

Alignment

JINR 114 Flerovium PLINE Dubna

Global Alignment accuracy within ± 0.1 mm

The near future

2018 GFS-2 acceptance tests 2018 GFS-2 first beam tests

2018 GFS-3 start fabrication 2019 GFS-3 installation

Future plans

We also built friendship

Human interaction

Team spirit

- GFS-2 is installed and under commissioning. First runs should start by end 2018
- A global contract has opened the possibility for thorough optimization.
- A similar (chiral symmetry) system is produced and will be installed in 2019
- A wonderful human experience!

Thank you for your attention

The essence of the beautiful is unity in variety

W. Somerset Maugham

Questions ?