

### DESIGN OF THE MULTI-ION INJECTOR LINAC FOR JLEIC

#### Brahim Mustapha Physics Division, ANL

Contributors: A. Plastun, P. Ostroumov and Z. Conway

HIAT-2018 Conference October 22-26<sup>th</sup>, 2018, IMP, Lanzhou, China

#### **Outline**

□ The Electron Ion Collider (EIC) – The next machine in the US

□ The Jefferson Lab EIC (JLEIC)

□ JLEIC Ion Injector Linac: Design Requirements & Choices

Design of the Different Linac Sections

□ Beam Simulations – Short linac version



B. Mustapha

Design of Multi-Ion Injector Linac for JLEIC



#### The Electron Ion Collider – The next machine in the US

- An Electron Ion Collider (EIC) is the highest priority for future U.S. accelerator-based nuclear physics facility following the completion of the Facility for Rare Isotope Beams (FRIB).
- Design Requirements of the EIC
  - High collision luminosity: ~  $10^{34}$  cm<sup>-2</sup>s<sup>-1</sup>
  - 2-3 orders of magnitude higher than HERA, the last e-p collider
  - High spin polarization: > 70% for electrons and light ions
  - Wide range of collision energies: 20-140 GeV CM energy
    5-18 GeV electrons & 60–250 GeV protons / ion equivalent

# **Two Design Concepts Proposed**



- Possible timeline: 2019 Mission need (CD-0)
  - 2021 Site selection
  - 2022 Start of construction
  - **2030** First beam collision



# The Jefferson Lab EIC (JLEIC) Concept



Pulsed SC Linac up to 280 MeV p - 100 MeV/u Pb
 8 GeV Booster followed by 100 GeV ion Collider Ring
 CEBAF is full energy injector for the e Collider Ring
 All rings are figure-8 to preserve spin polarization

B. Mustapha

Design of Multi-Ion Injector Linac for JLEIC



#### **JLEIC Injector Ion Linac: Design Requirements**

Capable of accelerating all beams: protons to lead ions – polarized / un-polarized light ions and un-polarized heavy ions

□ Baseline Design energy: p - 280 MeV / Pb - 100 MeV/u

□ Pulsed Linac: up to 10 Hz and 0.5 ms pulse length

□ Pulse Current: ~ 2 mA Light ions / ~ 0.5 mA Heavy ions

□ Pulse Length: ~ 0.5 ms Light ions / ~ 0.25 ms Heavy ions

□ Compact and Cost-efficient ...

B. Mustapha



# **JLEIC Linac - Design Choices**



## Different Ion Source Parameters → Separate RFQs

| lons                             | A/Z | Source        | Current, mA | Polarization | Emittance,<br>π∙mm∙mrad |
|----------------------------------|-----|---------------|-------------|--------------|-------------------------|
| <sup>1</sup> H-                  | 1   | ABPIS / OPPIS | 2           | > 90%        | 1.0                     |
| <sup>2</sup> H-                  | 2   | ABPIS / OPPIS | 2           | > 90%        | 2.0                     |
| <sup>3</sup> He <sup>2+</sup>    | 1.5 | EBIS          | 1           | 70%          | < 1                     |
| <sup>6</sup> Li <sup>3+</sup>    | 2   | ABPIS         | 0.1         | 70%          | < 1                     |
| <sup>208</sup> Pb <sup>30+</sup> | ~7  | ECR           | 0.5         | 0            | 0.5                     |

#### Light ions

- Large emittance of polarized beams requiring larger acceptance
- Minimum losses for deuteron beam to avoid activation

#### Heavy ions

- Heaviest ions (A/q ~ 7) define the RFQ acceptance, Not sufficient for polarized light ions
- > Two separate RFQs: One for A/q  $\leq$  2, another for A/q > 2



## RT Section to ~ 5 MeV/u – followed by SRF Linac

□ RT front-end up to ~ 5 MeV/u → Most efficient and cost-effective option for pulsed linacs, ex: CERN Lead linac and BNL EBIS injector



#### □ SRF Linac to full energy

- Larger acceptance & more flexibility for light and heavy ion beams
- More compact and cost-effective than the full RT or full SC options (Ref. P. Ostroumov, MEIC meeting 2015; R. York, JLEIC meeting 2016)
- Take advantage of state-of-the-art performance of QWRs and HWRs
- Pulsed SRF cavities can run higher voltage  $\rightarrow$  Shorter linac
- Pulsed RF power is not as expensive as CW

Argonne 🗲

# SRF Linac & Stripper Section



#### Stripping at 13 MeV/u to get Pb<sup>67+</sup> for Injection to the Booster

- □ Pb @ 13 MeV/u: 30+ → 67+, ~ 20% stripping efficiency
- SRF section made of 3 QWR modules and 9 HWR modules
- Each module is made of 7 cavities and 4 superconducting solenoids
- QWR and HWR operated at 4.7 MV





#### > One type of HWR covers the whole velocity range, $\beta$ : 0.15 – 0.35



# **Linac Sections Design**



### **Ion Sources**

Polarized Light Ions: Desired vs. Available H-/D- beams (A. Sy & V. Dudnikov)

|               | (units) | Desired value | ABPIS <sup>+</sup> | OPPIS*  |
|---------------|---------|---------------|--------------------|---------|
| Charge state  |         | H-/D-         | H-/D-              | H-/D-   |
| Pulse current | mA      | 2             | 3.8                | 4 (0.7) |
| Pulse length  | ms      | 0.5           | 0.17               | (0.3)   |
| Polarization  | %       | 100           | 91                 | 85      |

□ Heavy ions: ECR + Chopper or pulsed EBIS may be used

| lons                             | A/Q | Source | Current, mA | Emittance,<br>π∙mm∙mrad |
|----------------------------------|-----|--------|-------------|-------------------------|
| <sup>208</sup> Pb <sup>30+</sup> | ~ 7 | ECR    | 0.5         | 0.5                     |



## **Light and Heavy Ions LEBTs**



13



# Light and Heavy lons RFQs



- Light-Ion RFQ is designed for polarized beams with 2 π mm mrad normalized transverse emittance
- ✓ Heavy-Ion RFQ is designed for ion with A/q ≤ 7 with 0.5 π mm mrad

normalized transverse emittance

| Parameter                                     | Heavy ion | Light ion | Units      |
|-----------------------------------------------|-----------|-----------|------------|
| Frequency                                     | 1         | MHz       |            |
| Energy range                                  | 10 - 500  | 15 - 500  | keV/u      |
| Highest - A/Q                                 | 7         | 2         |            |
| Length                                        | 5.6       | 3.0       | m          |
| Average radius                                | 3.7       | 7.0       | mm         |
| Voltage                                       | 70        | 103       | kV         |
| Transmission                                  | 99        | 99        | %          |
| Quality factor                                | 6600      | 7200      |            |
| RF power consumption (structure with windows) | 210       | 120       | kW         |
| Output longitudinal<br>emittance (Norm., 90%) | 4.5       | 4.9       | π keV/u ns |



## **Options for RFQ Structure**

4-Rod



4-Vane window coupled



ATLAS RFQ

4-Vane



SPIRAL-2 RFQ

Large diameter

High power consumption

Flexible design

#### 4-vane bolted or brazed structure with windows or not …





Design of Multi-Ion Injector Linac for JLEIC



### **Options for IH Structure**

IH-DTL with Triplets DTL with RF Quad focusing **IH-FODO** with EMQs **BNL** EBIS Injector

- Most efficient
- Small acceptance
- Largest acceptance
- Less efficient

- Large acceptance
- Good efficiency

#### > IH-DTL with FODO: Larger acceptance for polarized light ions

Design of Multi-Ion Injector Linac for JLEIC







# **IH – DTL with FODO Focusing**

#### ✓ 3 Tanks – 20 Quadrupoles in FODO arrangements



- ✓ Energy gain: 0.5 4.9 MeV/u = 30.5 MeV
- ✓ Total length: 4.3 + 3.5 + 3.4 m = 11.2 m
- ✓ Real-estate accelerating gradient: 2.72 MV/m
- ✓ RF Power losses: 280 + 400 + 620 = 1.3 MW

B. Mustapha

Design of Multi-Ion Injector Linac for JLEIC

HIAT-2018, IMP, October 22-26th, 2018

10000



# **SRF Section: QWR & HWR Design Parameters**



QWR Module





Horizonal orientation of cavities

Stripping @ 13 MeV/u, Pb:  $30+ \rightarrow 67+$ 

QWR Design



HWR Design



| Parameter                            | QWR  | HWR  | Units     |
|--------------------------------------|------|------|-----------|
| β <sub>opt</sub>                     | 0.15 | 0.30 |           |
| Frequency                            | 100  | 200  | MHz       |
| Length (βλ)                          | 45   | 45   | cm        |
| E <sub>PEAK</sub> /E <sub>ACC</sub>  | 5.5  | 4.9  |           |
| B <sub>PEAK</sub> /E <sub>ACC</sub>  | 8.2  | 6.9  | mT/(MV/m) |
| R/Q                                  | 475  | 256  | Ω         |
| G                                    | 42   | 84   | Ω         |
| E <sub>PEAK</sub> in operation       | 57.8 | 51.5 | MV/m      |
| <b>B<sub>PEAK</sub></b> in operation | 86.1 | 72.5 | mT        |
| E <sub>ACC</sub>                     | 10.5 | 10.5 | MV/m      |
| Phase (Pb)                           | -20  | -30  | deg       |
| Phase (p/H⁻)                         | -10  | -10  | deg       |
| No. of cavities                      | 21   | 14   |           |

Design of Multi-Ion Injector Linac for JLEIC



### **High-Performance QWRs Developed at ANL for ATLAS**



✓ CW mode: A 72 MHz β=0.07 QWR can deliver 4 MV voltage (E<sub>peak</sub>~64 MV/m, B<sub>peak</sub>~90 mT)
 ✓ JLEIC: Pulsed operation of 100 MHz β=0.15 QWRs @ 4.7 MV per cavity (5.5 MV possible)

B. Mustapha

Design of Multi-Ion Injector Linac for JLEIC



### **High-Performance HWRs Developed at ANL for PXIE**

FNAL - 162 MHz HWR



SC section will operate at 4.5K in pulsed mode



CW mode: A 162 MHz β=0.11 HWR can deliver 3 MV voltage (E<sub>peak</sub>~68 MV/m, B<sub>peak</sub>~72 mT)
 JLEIC: Pulsed operation of 200 MHz β=0.3 HWRs @ 4.7 MV per cavity (6.6 MV possible)

B. Mustapha

Design of Multi-Ion Injector Linac for JLEIC



# End-to-End Beam Simulations (Short Linac Option)



#### End-to-end Simulation of a 2 mA Deuteron beam



No beam loss over the whole linac (10k particles) – Important to avoid activation



#### End-to-end Simulation of a 2 mA Proton beam



Some beam loss in the RFQ - normal

B. Mustapha

Design of Multi-Ion Injector Linac for JLEIC



#### End-to-end Simulation of a 0.5 mA Lead beam



Some beam loss in the RFQ ...

B. Mustapha

Design of Multi-Ion Injector Linac for JLEIC



#### **Output Beam Parameters**

| Parameter                             | Units      | H-   | D-   | Pb67+ |
|---------------------------------------|------------|------|------|-------|
| Energy                                | MeV/u      | 131  | 75.5 | 44.5  |
| Transmission                          | %          | 99.7 | 100% | 98.3  |
| Norm. transverse emittance<br>(90%)   | π·mm·mrad  | 2.3  | 1.3  | 0.8   |
| Norm. longitudinal emittance<br>(90%) | π·ns·keV/u | 8.8  | 7.1  | 4.6   |
| Energy spread (rms)                   | %          | 0.13 | 0.12 | 0.1   |

✓ Beam dynamics is being optimized, especially for light ions ...

 $\checkmark\,$  Stripper effect is being included for the heavy ions ...

Argonne

# **JLEIC Linac Design – Summary**



- Separate LEBTs and MEBTs for light and heavy ions
- Two RFQs: One for light ions  $(A/q \sim 2)$  and one for heavy ions  $(A/q \sim 7)$ 
  - Different emittances and voltage requirements for polarized light ions and heavy ions
- RT Structure: IH-DTL with FODO Focusing Lattice
  - $\circ$  FODO focusing  $\rightarrow$  Significantly better beam dynamics
- SRF section made of 3 QWR and 9 HWR modules
- Stripper section for heavy-ions after 2<sup>nd</sup> QWR module
- Pulsed Linac: up to 10 Hz repetition rate and ~ 0.5 ms pulse length

Argonne 🍊



# Thank you!

