

Present Status of HIRFL Complex in Lanzhou

Youjin Yuan

Institute of Modern Physics, CAS

The 14th International Conference on Heavy 100 Accelerator Technology (HIAT'18), Oct. 22-26, 2018

Lanzhou, China

Heavy Ion Research Facility in Lanzhou (HIRFL)

The largest ion-accelerator complex in China

Built in 1961 with the assistance of the Soviet Union, H&He 1970s, upgraded, Carbon~Uranium

K ~ 69, R ~0.75 m, E ~10 MeV(C), 1MeV/u(U)

The main cyclotron SSC

1988, K ~ 450, R ~3.203 m, α~U, E : 100 MeV/u (C), 10 MeV/u (U)

Synchrotron and Storage Rings CSRm & CSRe

IMP

HIRFL operation status

2013-2017

7896 7632 7536 7488 7272 5718 5547.5 5451.5 5199.5 5063 273 158.5 230.5 228.5 198.5 2013 2014 2015 2016 2017 Operation Beam **Failure**

Operation Time 2013-2017

Operation budget: 14.68 M\$*5 Operation time/a: 7565 h

Beam Time/a: 5273 h No. Experiments: 910 (+31 MS) User institutions: >200

Beam Time Distribution

Beams acc. by Cyclotrons

	1 V	1 A A	,							(CI	he	em	nio	ca		5	er	io	d	iC	: 1	2	b	le)	24 ~3	e 80	ele is	me oto	nt ope	'S 2S	_	18 VIII 0
	1.00794 氢 0.0899 Hydro	4 1 H gen		2 IA IA				At Oindia	tomic cates lo lived i	weight ongest- isotope			8 VIIIA VIII	•		Grou Class	ip sificati	on						13 /	3 B A	14 IV IV	4 B A	1 V V	5 B A	16 Vie Vi/	6 3 4	17 VIIB VIIA	4.002 氦 0.178 Helin	He He
	6.941 锂 0.53 Lithiu	3 Li 	9.0121 彼 1.85 Beryll	82 4 Be			Den Gas-(2	sity (3 73.151	00K) (C,1atu	g/cm ³) n)(g/L) Name	<u> </u>	1/1	55.847 第 快 日 7.86 Iron	26 	_	Aton num Sym	nic ber bol							10.811 2.535 Boron	5 B	12.011 碳 2.62 Carbon	6 C	14.006 須 1.251 Nitrog	74 7 N en	15.9994 氧 1.426 Oxygen	8 O	18.9984 9 氟 1.696 Fluorine	20.17 気 0.901 Neor	¹⁹⁷ 10 Ne
	22.9898 钠 0.9712 Sodiur	₀ 11 Na 'n	24.305 (侯 日 1.741 Magne	o 12 Mg	1	3 IA IB	r r	4 /A /B	N N	5 /A /B	v	6 IA IB	7 VIIA VIIB		8	V	9 IIIA ~ /III	1	10]	1 IE IE	1 3 3	1) 	2 3 3	26.9815 铝 2.70 Alumiu	13 Al	28.0855 硅 2.33 Silicon	14 Si	30.9738 磷 1.82 Phosph	s 15 P	32.066 硫 2.07 Sulfur	16 S	35.4527 1 氨 C 3.17 Chlorine	7 39.94 日 <u>氨</u> 1.784 Argo	18 Ar
	39.098 伊 0.86 Potassi	3 19 K	40.078 钙 1.55 Calciu	20 Ca	44.955 钪 3.0 Scand	9 21 Sc	47.88 钛 4.50 Titani	22 Ti	50.941 (5.8 Vanad	5 23 V	51.996) 铬 7.19 Chrom	Cr	54.9381 2 猛 M 7.43 Mangane	25 55. n 伊 7.8 se Iro	847 2 E F(6 58.93 e 钴 8.90 Coba	22 27 Co	58.69 镍 8.90 Nicke	28 Ni	63.546 铜 8.96 Copper	29 Cu	65.39 锌 7.14 Zine	30 Zn	69.723 镓 5.91 Galliun	31 Ga	72.61 锗 5.32 Germa	32 Ge	74.9210 砷 5.72 Arseni	6 33 As	78.96 700 4.80 Seleniu	34 Se	79.904 3 溴 目 3.12 Bromine	5 83.80 5 気 3.74 Kryp	o 36 Kr
	85.4678 ()) 1.53 Rubidi	37 Rb	87.62 钯 2.6 Stront	38 Sr	88.905 纪 4.5 Yttriu	9 39 Y	91.224 锆 6.49 Zircot	40 Zr	92.906 紀 8.55 Niobi	⊶ 41 Nb	95.94 钼 10.2 Molyb	42 Mo m denu	(97.907) 得 11.5 Technetin	43 101 「C 气 12. m Ru	1.07 4 R 2 thenium	4 102.9 u 佬 12.4 n Rhod	66 45 Rh	106.42 钯 12.0 Pallad	e 46 Pd	107.868 很 10.5 Silver	47 Ag	112.411 镉 8.648 Cadmin	48 Cd	114.82 田 7.31 Indium	49 In	118.71 锡 7.30 Tin	50 Sn	121.75 锑 6.618 Antime	51 Sb	127.60 碲 6.24 Telluriu	52 Te	126.904 5 碘 4.92 lodine	3 131.2 日 伝 5.89 Xend	9 54 Xe
	132.90: 铯 1.87 Cesiun	55 Cs	137.32 钡 3.78 Bariur	7 56 Ba	138.90 ()) 6.7 Lanth	57 La	178.49 给 13.1 Hafni	72 Hf	180.94 但 16.6 Tantal	8 73 Ta	183.85 钨 19.3 Tungs	74 W	186.207 狭 下 21.0 Rhenium	75 190 (e 钥 22. Os	0.2 70 2 0 59 mium	5 192.2 S 依 22.42 Iridiu	2 77 Ir	195.08 伯 21.4 Plating	78 Pt	196.967 金 19.3 Gold	79 Au	200.59 汞 13.546 Mercur	80 Hg	204.383 佗 11.85 Thalliu	81 TI	207.2 铅 11.34 Lead	82 Pb	208.980 43 9.781 Bismu	о 83 Ві њ	(208.98) 钋 9.4 Poloniu	84 Po	209.99) 8 破 A - Astatine	5 (222.) .t 9.91 Rade	02) 86 Rn
	(223.02 钫 Franci	。87 Fr	(226.03 镭 5.0 Radiu	₃ 88 Ra 	(227.0) (227.0	₃ 89 Ac	(261) 🧰 Ruthe	104 Rf m	(262) 針 Dubni	105 Db	(266) 嬉 Seabor	106 Sg	(264) 1 鈹 E Bohrium	07 @ 8h	9) 10 [H ssium	8 (268) S 一 — Meitr	109 Mt	(268) : 錠 Darms	110 Ds m stadtiu	(268) 論 Roentg	111 Rg	(269) 1 毎 Copern	112 Cn	(268) 1 鉩 Nihonin	113 Nh	(268) ′ 鉄 - Flerovi	114 FI	(268) (((((((((((((((((((115 Mc	(268) 1 鈫 Livermo	16 Lv	268) 11 6田 TS - Tennessine	7 (268) 复 一 Ogan	0 118 Og
						_	140.11 • 铈 6.78	₅ 58 Ce	140.90 镨 6.77	s 59 Pr	144.24 钕 7.00	60 Nd	(144.91) (钜 P 6.475	51 150 m 65	0.36 6 ≸Sr 4	2 151.9 n 铕 5.26	∞ 63 Eu	157.25 住 7.89	64 Gd	158.925	65 Tb	162.50 镝 8.54	66 Dy	164.930 钬 8.80	67 Ho	167.26 铒 9.05	68 Er	168.934 铥 9.33	₄ 69 Tm	173.04 镜 6.98	70 Yb	174.967 7 镥 Lu 9.84	1 J	
2013						_	Ceriu 232.03 • 仕 11.7 Thori	m ≋ 90 Th m	Prase (231.0 (231.0 (231.0) (2	+) 91 Pa Pa	Neody (238.03 由 19.07 Uraniu) 92 U m	Promethin (237) 9 镎 N 20.4 Neptuniu	m Sa 3 (24 10 (24 19. m Ph	marium 4) 9/ F P 8 Itonium	Europ 4 (243) 4 (243)	95 Am	Gadol (247) G 13.511 Curiu	96 Cm	Terbiuu (247) 倍 Berkeli	97 Bk	Dyspro: (251) (25)	98 Cf	Holmiu (252) (252) Einstein	99 Es	Erbium (257) ' (ひつつ) (257) ' (257) ' (100 Fm ≖	Thuliu (258) (一 Mende	m 101 Md m eleviu	Ytterbin (259) 1 任 Nobelin	02 No	Lutetium (262) 10 (好 L Lawrenciu	3 r	

Beam by Cyc.s and CSRm

1 IA IA			С	her	nica	al F	Per	ioc	lic	Та	ble		2 ele t CS	ment Rm	S	18 VIII 0
1.00794 1 2 IIA 0.0899 Hydrogen		Atom Oindicates live	ic weight s longest- d isotope	8 VII VI	A+	Group Classi	fication				13 IIIB IIIA	14 IVB IVA	15 VB VA	16 VIB VIA	17 VIIB VIIA	4.00260 2 (x) He 0.1787 Helium
6.941 3 9.012182 4 锂 Li 钕 Be 0.53 Lithium Beryllium	D Gas)ensity (300K ;-(273.15K,1a	.) (g/cm³) htm)(g/L) Name	55.847 快 7.86 Iron	26 Fe	Atomi numbo Symbo	c er ol				10.811 5 研 B 2.535 Boron	12.011 6 碳 C 2.62 Carbon	14.00674 7 氨 N 1.251 Nitrogen	15.9994 8 氧 0 1.426 Oxygen	18.9984 9 氟 F 1.696 Fluorine	20.1797 10 気 Ne 0.901 Neon
22.9898 11 24.3050 12 纳 Na 镁 Mg 0.9712 1.741 Sodium Magnesium	3 IIIA IIIB	4 IVA IVB	5 VA V VB V	6 7 VIA VII VIB VII	8 B	9 VII VI	1 IA II	10	11 IB IB	12 IIB IIB	26.9815 13 铝 AI 2.70 Alumium	28.0855 14 硅 Si 2.33 Silicon	30.9738 15 磷 P 1.82 Phosphorus	32.066 16 硫 S 2.07 Sulfur	35.4527 17 氯 CI 3.17 Chlorine	39.948 18 氨 Ar 1.784 Argon
39.0983 19 40.078 20 44 伊 K 钙 Ca 43 0.86 1.55 Potassium Calcium S	4.9559 21 47. 亢 SC 0 candium Tit	.88 22 50.9 大 Ti 研 50 5.8 tanium Va	9415 23 51.99 V格 7.19 nadium Chro	61 24 54.9381 Cr 猛 I 7.43 mium Manga	25 55.847 Mn 铁 7.86 uese Iron	26 58.9332 Fe 钴 8.90 Cobalt	27 58.69 Co 保 8.90 Nicke	28 63.5 Ni 铜 8.96	46 29 Cu per	65.39 30 锌 Zn 7.14 Zinc	69.723 31 镓 Ga 5.91 Gallium	72.61 32 锗 Ge 5.32 Germanium	74.9216 33 砷 As 5.72 Arsenic	78.96 34 78.96 Se 4.80 Selenium	79.904 35 溴 Br 3.12 Bromine	83.80 36 気 Kr 3.74 Krypton
85.4678 37 87.62 38 83 物 Rb 锶 Sr 年 1.53 2.6 4. Rubidium Strontium Y	8.9059 39 91. 乙 Y 键 5 6.4 Yttrium Zin	224 40 92.9 古 Zr 铌 19 8.55 reconium Nic	9064 41 95.94 ND 钼 5 10.2 poium Moly	42 (97.907 MO 得 m 11.5 bdenu Techne	43 101.07 TC 钌 12.2 frum Ruthen	44 102.906 Ru 铑 12.4 ium Rhodiu	45 106.42 Rh 钯 12.0 m Pallad	46 107.3 Pd 银 10.5 ium Silv	ace 47 Ag	112.411 48 镉 Cd 8.648 Cadmium	114.82 49 铟 In 7.31 Indium	118.71 50 锡 Sn 7.30 Tim	121.75 51 锑 Sb 6.618 Antimony	127.60 52 碲 Te 6.24 Tellurium	126.904 53 碘 I 4.92 Iodine	131.29 54 氙 Xe 5.89 Xenon
132.905 55 137.327 56 13 铯 Cs 钡 Ba 1.87 3.78 6. Cesium Barium L	38.906 57 178 La 保 7 13. anthanum Ha	8.49 72 180 计 Hf 但 1 16.0	948 73 183.8 Ta钨 6 19.3 Italum Tung	5 74 186.207 W 铼 21.0 sten Rheniu	75 190.2 Re 锇 22.59 m Osmiu	76 192.22 Os 铱 22.42 Iridium	77 195.08 Ir 铂 21.4 Platim	· 78 196.9 Pt 金 19.3 um Gold	967 79 Au	200.59 80 汞 Hg 13.546 Mercury	204.383 81 铊 TI 11.85 Thallium	207.2 82 铅 Pb 11.34 Lead	208.980 83 66 Bi 9.781 Bismuth	(208.98) 84 钋 PO 9.4 Polonium	(209.99) 85 砹 At Astatine	(222.02) 86 氡 Rn 9.91 Radon
(223.02) 87 (226.03) 88 (2	27.03) 89 (26 M AC 3 0.07 - .ctinum Ru	51) 104 (26) Rf # m – ntherfordiu Du	2) 105 (266) DD 嬉 bnium Seab	106 (264) Sg 皴 orgium Bohriu	107 ₍₂₆₉₎ 1 Bh <u>錁</u> n [—] Hassiu	108 ₍₂₆₈₎ 1 Hs 銬 m [—] Meitner	109 (268) Mt 鍵	110 (268) DS 36 m - stadtiu Roe) 111 Rg	(269) 112 毎 Cn Copernicium	(268) 113 	(268) 114 鉄 FI - Flerovium	(268) 115 镆 Mc Moscovium	(268) 116 鉝 Lv Livermorium	(268) 117 石田 TS - Tennessine	(268) 118 Q Og - Oganesson
	140 日 6.7	0.115 58 140 萨 Ce 错 /8 6.77	9.908 59 144.2 Pr 钕 m 7.00	4 60 (144.91) Nd 钷 1 6.475	61 150.36 Pm 6	62 151.965 Sm <u></u> 有 5.26	63 157.25 Eu <u>钆</u> 7.89	64 158.9 Gd 铽	925 65 Tb	162.50 66 镝 Dy 8.54	164.930 67 飲 HO 8.80	167.26 68 铒 Er 9.05	168.934 69 铥 Tm 9.33	173.04 70 镜 Yb 6.98	174.967 71 鲁 Lu 9.84	
	Ce 232 一名	erium Pra 2.038 90 (23) L Th (4) .7 15.4	seodymiu Neod 1.04) 91 (238.0 た Pa 曲 4 19.07	ymium Promet 13) 92 (237) U (237) 20,4	193 (244) Np 怀 19.8	Europiu 94 (243) Pu 個 13.6 13.6	m Gadol 95 (247) Am 锅 13.511	inium Tert 96 (247) Cm 锫	97 Bk	Dysprosium (251) 98 (研 Cf 	Holmium (252) 99 娘 Es	erbium (257) 100 镄 Fm -	Thulium (258) 101 旬 Md	Ytterbium (259) 102 锘 NO 	Lutetium (262) 103 铹 Lr	
	Ть	orium Pro	tactnium Urani	ium Neptun	ium Plutoni	ium Americ	ium Curiu	m Berl	elium	Californium	Einsteinium	Fermium	Mendeleviu	Nobelium	Lawrencium	

HIAT2018, Oct.22-26, 2018, Lanzhou

IMP

W

Beam Availability of SFC and SSC

0	Not avai	lable by	SFC or S	SSC				Limited by SFC-RF frequency <15.5 MHz									
2	Available Available	e by SFC e by SFC	+SSC,sa	me A/Q			1	Availabl	e by SFC-	B >11 Cafter sti	pping.						
E(MeV/u)	SFC 0.4	0.6	1	1.5	2	2.5	3	3.5	4	5	6	7	8	9	10	E	(MeV/u
A/Qs	SSC 4.1	6.2	10.4	15.8	21.2	26.7	32.3	38.0	43.8	55.6	67.9	80.6	93.7	107.3	121.4	N	
8	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0		
7.75	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0		
7.5	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0		
7.25	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0		
7	2	2	1	0	0	0		A/Q	SFC 11	12	14	16	18	20	23	26	30
6.75	2	2	1	1	0	0		2.75	0	0	0	0	0	0	0	0	0
6.5	1	2	2	1	0	0		2.5	1	0	0	0	0	0	0	0	0
6.25	1	2	2	1	0	0		2.25	1	1	0	0	0	0	0	0	0
6	1	2	2	1	0	0		2	1	1	1	1	0	0	0	0	0
5.75	1	2	2	1	1	0		1.5	1	1	1	1	1	1	1	1	1
5.5	1	2	2	1	1	0		1	0	0	0	0	1	1	1	1	1
5.25	1	1	2	2	1	1		F-SFC	9.691	10.11	10.91	11.64	12.33	12.98	13.88	14.72	15.77
5	0	1	2	2	1	1	Ļ		U	U	U	U	U	U	U		
4.75	0	1	2	2	1	1	1	0	0	0	0	0	0	0	0		
4.5	0	1	2	2	2	1	1	0	0	0	0	0	0	0	0		
4.25	0	0	2	2	2	1	1	1	0	0	0	0	0	0	0		
4	0	0	1	2	2	2	1	1	1	0	0	0	0	0	0		
3.75	0	0	1	2	2	2	1	1	1	0	0	0	0	0	0		
3.5	0	0	1	2	2	2	2	1	1	1	0	0	0	0	0		
3.25	0	0	0	1	2	2	2	2	1	1	1	0	0	0	0		
3	0	0	0	1	2	2	2	2	2	1	1	1	0	0	0		
2.75	0	0	0	1	1	2	2	2	2	2	1	1	1	1	0		
2.5	0	0	0	0	1	1	2	2	2	2	2	1	1	1	1		
2.25	0	0	0	0	0	1	1	2	2	2	2	2	1	1	1		
2	0	0	0	0	0	0	1	1	1	2	2	2	2	2	1		
1.5	0	0	0	0	0	0	0	0	0	1	1	1	2	2	2		
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	F	
-SFC	5.59	6.85	8.84	10.82	12.49	13.95	15.28	*16.50	5.88	6.57	7.19	7.76	8.28	8.78	9.25	r _{rf}	(MHZ)
F- SC	8.39	6.85	8.84	10.82	12.49	13.95	7.64	8.25	8.82	9.85	10.78	11.63	12.43	13.17	13.87		
n ich	0.5	1	1	1	1	1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
* possibly	availble k	ov SFC-5	5.49MHz	7		A/O	SFC 11	12	14	16	18	20	23	26	30		

Present Status of HIRFL Complex in Lanzhou

UPGRADING OF INFRASIA BRE

- HIRFL was built-up in 3 periods, lasting about half century.
- Under strong support of the national maintenance and renovation budget for large scale fundamental science and technology facilities from CAS, many aspects of the infra-structure of HIRFL were upgraded or renewed to improve the operation stability and reduce the failure time:
 - Power station for SSC and beam lines to terminals
 - Water cooling system

Institute of Modern Physics, Chinese Academy of Sciences

- Intranet
- EMC environment of CSRe and RIBLL2
- Environment control
 - The power supply rooms of CSR
 - New monitoring systems of water-cooling, power station and water leakage detection
 - Radiation protection system

New Power Station for SSC and beam lines to terminals

New grid technology used to improve the reliability, safety and energy efficiency

Upgrade of Water Cooling

Goals

- Pressure stability → ≤0.5kgf/cm2
- High water resistance → ≥1MΩ•cm
- Real-time monitoring.

Actions

- Replace packing pumps by vertical multistage centrifugal pumps
- Centralized management (3 in 1) of Frequency Conversion pumps by PLC
- New RO + EDI with Polishing Resin Bed.

Results

- Pressure stability: \pm 0.25, \pm 0.1, \pm 0.45 kgf/cm²
- Inner water resistance: >2, 1.2, 3 MΩ·cm (SFC, SSC, CSRm)
- Space saved by 40% for inspection and maintenances
- Power consumption reduce by 11%
 - Soft switch on & off of bumps

Real time monitoring device status and parameters, failure alert.....

Upgrade of Water Cooling

Goals

- Pressure stability → ≤0.5kgf/cm2
- High water resistance → ≥1MΩ•cm
- Real-time monitoring.

Actions

- Replace packing pumps by vertical multistage centrifugal pumps
- Centralized management (3 in 1) of Frequency Conversion pumps by PLC
- New RO + EDI with Polishing Resin Bed.

Results

- Pressure stability: \pm 0.25, \pm 0.1, \pm 0.45 kgf/cm²
- Inner water resistance: >2, 1.2, 3 MΩ·cm (SFC, SSC, CSRm)
- Space saved by 40% for inspection and maintenances
- Power consumption reduce by 11%
 - Soft switch on & off of bumps

Real time monitoring device status and parameters, failure alert.....

Upgrade of Water Cooling

RO+EDI with Polishing Resin Bed
 resistance
 improved obviously + Less water consumption

Upgrade of Intranet

- The backbone:100 M → 10 G bandwidth •
- Physical link network topology optimization •
- Network expansion with virtualization tech. •

Improving of EMC Enviro.

- The signal cables and power cables of CSRe and RIBLL2 were rearranged and rewired to reduce the EMI and improve the EMC environment.
- The background noise levels of beam diagnosis and experiment detectors were reduced by more than one order.

EMC Enviro. at CSRe

- New power supply rooms for CSRm and CSRe inside the CSR hall
- New monitoring systems of
 - water-cooling
 - power station
 - water leakage detection
- The radiation protection system partly rebuilt.

New CSRe PS Room

Water Leakage Detection

Detection points distributed along beam lines, at PS rooms and terminal areas.

Water Leakage Detection

Present Status of HIRFL Complex in Lanzhou

New Control System

- The self-developed distributed control system of HIRFL was developed in many years part by part, and based on many kinds of platforms.
- In last years, the open-source Experimental Physics and Industrial Control System (EPICS), developed at LANL and ANL, was adapted to take over most of the control system of HIRFL.

FREE AND OPEN SOURCE Image: Constraint of the second s

EPICS is developed as a public open source project. The source code is freely available according to the EPICS Open License.

DEVELOPED COLLABORATIVELY

畿

EPICS was created through collaborative contributions from scientific facilities since a long time. It is the preferred choice for complex, large scale distributed control system applications.

\bigotimes

POWERFUL AND RELIABLE

The launch of EPICS 7 marks the biggest change of the EPICS code base for over 10 years. The new, feature-rich pvAccess protocol enables many new applications with unprecedented performance and capacity. Read more

H

The structure of new control system

Properties and Results

- Whole substitution of previous system
- Rearranged local controllers and rewire cables
- Big data volume transfer and monitor
- Direct data archive system based on MongoDB, no influence on operator GUIs

- New CSRm injection inflector and User Interface
- New control system for e-cooler instead of the hardware attached one
- The LLRF of cyclotron RF systems and new CSRm RF
 controller were rebuilt

Virtual Accelerator Software

CSS + Soft IOC + Python will replace previous VB Version

MIRFL-CSR Virtual Accelerator											
Institute	of Modern Physics, Chinese Acad	emy of Sciences	Load Acc:	~ Ar	40 氩	12 + of 18	Mass 39.95580	0165240000			
al Accelerator Rampi	ing Data RF Data		_	1							
Save to:	✓ Fast Extraction	on Slow Ex	ctraction Rel	oad							
njection		Mid Flat Top		Extraction		Final		Calculate Directo and DE Caul			
nergy[MeV/u]	6.2180	Energy[MeV/u]	25.0000	Energy[MeV/u]	389.2000	Energy[MeV/u]	400.0000	Calculate Dipole and RF Cavi			
art_B_Rho[Tm]	1.197379527697060	Part_B_Rho[Tm]	2.412945459508321	Part_B_Rho[Tm]	10.398402446231275	Part_B_Rho[Tm]	10.566934296919770	Calculate Quadrupoles			
elt R[mm]	-1.7000	Delt R[mm]	-1.7000	Delt R[mm]	6.0000	Delt R[mm]	1.8000				
F Harmonic No.	2.0000	Frequency[MHz]	0.845935451689089	RF Harmonic No.	1.0000	RF Harmonic No.	1.0000	Preapre Data			
requency[MHz]	0.428187835377754	Vrf1 [kV]	1.8000	Frequency[MHz]	1.319702075978096	Frequency[MHz]	1.330431287811890	Preapre RF			
rf [kV]	1.5000	Vrf2 [kV]	1.8000	Vrf [kV]	1.5000	Vrf [kV]	1.5000				
ı	3.6220	Qh	3.6150	Qh	3.6180	Qh	3.6200	Delivery Data			
v	2.6100	Qv	2.6100	Qv	2.6120	Qv	2.6100	CSRm DC			
	1.0000	tau	0.0000	tau	0.0000	tau	0.0000	Triana			

New CSRm Inflector

- New inflector for both MMI and CEI
- Saving time of breaking of vacuum (n*3 days/a)

New CS of e-Cooler@CSRm

- A new generation superconductive ECR source-SECRAL-II as a back-up of the former SECRAL with better performance was constructed and will put into operation this year.
- With new structure, higher magnetic field and works at 18 GHz / 24 GHz microwave frequency, SECRAL-II sets a new beam current record of highly charged heavy ion beams.

New Full SC SECRAL-II

- Serial of ECR ISs. Keep the • state of art IS technology and world records.
- New Full SC SECRAL-II as a . backup under CAS support
- (maybe online this year!) •

SECRAL-II features (eµA)									
Ion	SECRAL-II	SECRAL							
O ⁶⁺	6700	2300							
Ar ¹⁴⁺	1040	846							
Ar ¹⁶⁺	620	350							
Ar ¹⁸⁺	15	0.2							
Kr ¹⁸⁺	1020	304							
Kr ²⁸⁺	146	4							
Xe ³⁰⁺	365	360							
Xe ³⁸⁺	56	22.6							
Xe ⁴⁵⁺	1.3	0.1							
Ta ³⁰⁺	375	1							
Ta ³⁸⁺	204	1							

New Full SC SECRAL-II

- Serial of ECR ISs. Keep the state of art IS technology and world records.
- New Full SC SECRAL-II as a backup under CAS support
- (maybe online this year!)

SECRAL-II features (eµA)										
Ion	SECRAL-II	SECRAL								
O ⁶⁺	6700	2300								
Ar ¹⁴⁺	1040	846								
Ar ¹⁶⁺	620	350								
Ar ¹⁸⁺	15	0.2								
Kr ¹⁸⁺	1020	304								
Kr ²⁸⁺	146	4								
Xe ³⁰⁺	365	360								
Xe ³⁸⁺	56	22.6								
Xe ⁴⁵⁺	1.3	0.1								
Ta ³⁰⁺	375	/								
Ta ³⁸⁺	204	/								

Highly charged ECR ion source development at IMP, L.T. Sun at this conference

Ion Sources for SFC

e-Cool with Pulsed e-Beam

- Pulsed Electron Cooling Experiments of electron cooling with pulsed electron beam are performed for the **1st** time at CSRm.
- New phenomena were observed. Be explained in theory and proved by numeric simulations.
- Important for the cooling of high energy bunched ion beam with high peak current electron cooler, at future ion circular accelerator or colliders.

Institute of Modern Physics, Chinese Academy of Sciences

Pulsed e-Beam

주하

- Grid voltage is used to switch on/off ebeam → pulsed e-beam
- Timing system based on RF signal for synchronization
- DG535 is used to control the delay and pulse width

11国私字院诉

Institute of Modern Physics, Chinese Academy of Sciences

Pulsed e-Beam

Institute of Modern Physics, Chinese Academy of Sciences

容師

E

- Grid voltage is used to switch on/off e-٠ beam → pulsed e-beam
- Timing system based on RF signal for synchronization
- DG535 is used to control the delay and ٠ pulse width

Timing system		- DG535	Delay		3535 Pulse width			
	CLOCK GA TE CIRCUIT OUT							TRIGGERED BY RF SYSTEM SECONDARY DELAY IN SCOPE
-			GATE PUL	SER OUT (E.C	G. 0.02 Hz)			
1	1 SEC							
		RF TRIGGER FROM IMP						GATED PULSED
ON > 30 SEC		RF ON SIGNAL (IMP INTERNAL SIG					 	
225 KHz								
450 kHz RF								
HIAT2018, (Oct.22	2-26. 2018. Lanzhou						37

Coasting ion beam

- Non synchronize heating effect – The freq. of e-beam should be int. or half int. of F_{rev} ion beam for a stable beam.
- Grouping effect The ion beam cooled to a pulse with the same width of e-beam. The distribution is non-uniform.
- Sidebands sidebands appears, similar with the synchrotron sidebands.

Exp. Parameters

7.0 MeV/u C ⁶⁺	Coasting	Bunched
Particle number	5.0 x 10 ⁸	1.3 x 10 ⁸
Emittance (RMS)	*/*	*/*
dp/p (RMS)	2.0 x 10 ⁻⁴	7.0 x 10 ⁻⁴
Bunch length (RMS)	*	~135 ns
RF voltage	*	1.0 kV
h	*	2
E-beam current (peak)	30 mA	65 mA
E-beam diameter	~30 mm	~25 mm
Pulse width	0.5-3.0 µs	0.5-3.0 µs
Rising/falling time	10 ns	10 ns

- Bunched ion beam
 - Cooled and uncooled ions
 - The pulse width of e-beam is larger than the ion bunch length
 - Bunch shape evolution

- Simulation on Coasting Beam
 - e-bunch formed a barrierbucket-like potential well
 - BPM signals in one cycle used
 - Good agreement with the meas.

- Simulation on Bunched Beam
 - e-bunch formed a barrierbucket-like potential well
 - Good agreement with the meas.
 - Similar cooling process with the exp. of DC e-beam cooling

Simulation

- Multi-pulsed e-beam on coasting ion beam
 - The ion beam is been cooled to many pulses
 - The comparison between different pulsed e-beam (No. bunches, length, duty factor, e-current)

- Short pulsed e-beam (15 ns) on bunched ion beam
- Simulation
- RF bucket modulated by the barrier voltage of e-pulses

- The performance of RIBLL2 as an in-flight separator of relativistic projectile fragments was gradually improved.
- There are 8 beam profile detectors newly installed along RIBLL2 for both horizontal and vertical profiles.
- In the joint efforts of experimental teams, RIBLL2-ETF is capable of identifying clearly all ions up to Z=30, with the combination of the TOF and the MUSIC detectors.
- Future upgrading of RIBLL 2 was planned.

Improve of RIBLL2

HIAT2018, Oct.22-26, 2018, Lanzhou

Advanced Mass Spectrometry

- State-of-art mass resolution of storage rings with unique two-TOF velocity measurement setups.
- Following the ISO mode mass spectrometry at ESR@GSI, we explored deeply the mass spectrometry at CSRe.

理研究所

Institute of Modern Physics, Chinese Academy of Sciences

- With the improvement of EMC environment and new dipole PS at CSRe, the signal-noise ratio was significantly improved.
- With the new idea of two-TOF detector at storage rings (Unique) to measure the velocity of ions, the transition energy (γ_t), as a function of the closed orbit length or momentum deviation, can be measured precisely using the time spectra data of the ions cycling in CSRe.
- The transition energy function can be monitored and optimized online to ensure stable and good isochronous condition.
- With the quadrupole magnets and sextupole magnets corrections, a mass resolution of 1.71×10^5 (FWHM) was reached.
- Nonlinear optimization with higher order magnet field was planned.

Advanced Mass Spectrometry

Single TOF ISO mode mass spectrometry @CSRe

中国科学院近代物理研究所

Typicanoiperation hysics, Chinese Academy of Sciences

Advanced Mass Spectrometry

理研究所

Institute of Modern Physics, Chinese Academy of Sciences

Other Ion Cooling Systems

- Stochastic Cooling and Laser Cooling are realized in CSRe, which will help to extend the research ability of nuclear and atomic physics at CSRe.
- The beam after target with large emittance and momentum spread can be cooled down in seconds by stochastic cooling with slot line pickup and kickers.
- Stochastic cooling will be used in the Schottky Mass Spectrometry (SMS) experiments.
- The relativistic Li-like O⁵⁺ beam, with energy of 280 MeV/u, was cooled by CW laser of wavelength 220 nm recently. It's up to now heavy ions with highest charge state and highest energy that ever been laser cooled.

Institute of Modern Physics, Chinese Academy of Sciences

CSRe with Stochastic Cooling

空院诉

IMP

穷所

Tt's inst a

CSRe with Laser Cooling

ITS JU	si a	Deginnin	Ig						
					8		CSRe parameters		
							Circumference	128.80 m	
		AN CONTRACT		n _{ch}			Ion species	¹⁶ O ⁵⁺	
	, N	h.		er.			Beam energy	275 MeV/u	
	`				9		Relativistic β , γ	0.64, 1.30	
	S	CS	Re	ω	(0)	F. Nolden, et al.,	Revolution frequency	1.491 MHz	
	an	1605+			Sch	NIMA,659(2011)69-77	Transition energy γ_t	2.629	
og ∓	A B	1005,	p = 0.04	SA ₽			Harmonic number <i>h</i>	10, 15	
	E E		011 m	စီ ႏူး	Ś		Laser system		
itro	pe	- · - · - · - ·			CP		Laser source	CW laser	
	- S	oulooor		B	`≥ ⊽_	W. Wen et al., NIMA, 711(2013)90-95	Laser wavelength	$\lambda_{\text{laser}} = 220 \text{ nm}$	
	I II	cw laser			Ĕ	*********	Laser power	$P_{laser} = 40 \text{ mW}$	
5	v m	lons		σ ,			Scanning range	$\Delta f_{\text{laser}} = 20 \text{ GHz}$	
i i i		Mom	entum		(Cooling tra	Cooling transition	
	RF B		!				$2S_{1/2} \rightarrow 2P_{1/2}$	$\lambda_{\rm rest} = 103.76 \ \rm nm$	
		Ha Ala		^e Scannir	na		$2S_{1/2} \rightarrow 2P_{3/2}$	$\lambda_{rest} = 103.19 \text{ nm}$	
				& CW		0 0 0			
				Europ					

CSRe with Laser Cooling

Preliminary results: Coasting beam with fixed laser

Laser force range: $\triangle p/p \approx 1.0 \times 10^{-7}$

Preliminary results: Coasting beam with scanning laser

Laser scanning range: $\triangle p/p \sim 10^{-4}$

CSRe with Laser Cooling

Preliminary results: Coasting beam with fixed laser

CSRe with Laser Cooling

Preliminary results: Laser cooling of bunched ion beams

Only part of the ¹⁶O⁵⁺ ions were laser-cooled

Present Status of HIRFL Complex in Lanzhou

FUTURE DEVELOPHENTS

HIAT2018, Oct.22-26, 2018, Lanzhou

• Parallel operation modes of HIRFL.

- Enough maintenance period for injectors
- ➢ More total beam time

• Parallel operation modes of HIRFL.

- Enough maintenance period for injectors
- ➢ More total beam time

• Parallel operation modes of HIRFL.

- Enough maintenance period for injectors
- More total beam time
- High beam transmission efficiency from IS to CSRm and intensity.
 - Enough energy/ intensity to get highly charged heavy ions for higher accelerated energy by CSRm.
 - ➢ Short accumulation time → higher repetition rate of CSRm.

SSC-Linac: Overview

New high intensity heavy ion injector of SSC

HIAT2018, Oct.22-26, 2018, Lanzhou

SSC-Linac: Progress

- Beam test of IS+LEBT+RFQ+DTL1 is done
- DTL2 be installed this month
- DTL34 ordered
- Civil construction start this summer
- Commissioning start by end of 2019

Installation Site of SSC-Linac

• Platform for RF generators, right up the cavities, 80 m²

ギ物理研究所

• New building outside SSC hall for PS, water cooling etc. ~400 m²

HIAT2018, Oct.22-26, 2018, Lanzhou

田国科学院沂

Institute of Modern Physics, Chinese Academy of Sciences

Outlook

Recent and future projects based on HIRFL

Thanks for the 50 years cooperations of all our friends!

Present Status of HIRFL Complex in Lanzhou

Thanks for your attention!

Upgrading cyclotron terminals 弋物理研究所 Institute of Modern Physics, Chinese Academy of Sciences

利学院沂伯

IMP

RIBLL

Online γ detector

Micro beam irradiation

Vacuum Chamber for material irradiation

Microbeam facility on the first floor (upper part)

Characteristics:

- 1. Energy selection
- 2. Vertical irradiation
- 3. Focusing micro beam
- 4. Two foci: one in vacuum the other in the air

Inverted microscope for cell irradiation

Quadrupole triplet, Φ 15mm L = 100mm, G = 123 T/m

Facility in the cellar (lower part)

HIAT2018, Oct.22-26, 2018, Lanzhou

New single event effects

terminal

■ 700 hours/year for SEE (Single Event Effects) researches

(2010-2014)

- Improving the accuracy and efficiency of ground simulation for space radiation
- Increasing reliability for electronic device evaluations

TR5 terminal for SEE research at the HIRFL experiment hall

Main Chamber

Pre-vac chamber

4-dimensional sample holder

HIAT2018, Oct.22-26, 2018, Lanzhou

DR experiment setup

Operation mode: ECR+SFC+CSRm, Beams: C, Ar , Xe, Sn...

Energy range of HIRFL

HIRFL+10MeV/u new injector

- The number of ions in CSRm can be increased by 10~200 times
- The repetition cycle time can be reduced by $\sim 30\%$

Layout of HIRFL (part)

Layout of HIRFL (part)

SFC Injector Alone

SSC-Linac + SSC

Parallel Operation with 2 Injectors

Parallel Operation with 2 Injectors

THE END

84