Nuclear Physics Research at Heavy Ion Accelerators: Precision experiments with stored and cooled exotic nuclei

14th International Conference on Heavy Ion Accelerator Technology (HIAT'18) 22-26 October 2018, IMPCAS, Lanzhou, China

1902

National Research Council's board on physics and astronomy

erc

ASTRUm

02.01.2002 The 11 Greatest Unanswered Questions of Physics

Resolution of these profound questions could unlock the secrets of existence and deliver a new age of science within several decades 02.01.2002

The 11 Greatest Unanswered Questions of Physics

Resolution of these profound questions could unlock the secrets of existence and deliver a new age of science within several decades

Eric Haseltine, Dan Winters & Gary Tanhauser

National Research Council's board on physics and astronomy

Long Range Plans

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

NSF: The 2015 Long Range Plan for Nuclear Science Summary and Recommendations

NuPECC: The 2017 Long Range Plan for Nuclear Physics

NuPECC: The 2017 Long Range Plan for Nuclear Physics

How is mass generated in QCD and what are the static and dynamical properties of hadrons?

How does the strong force between nucleons emerge from the underlying quark-gluon structure?

How does the complexity of nuclear structure arise from the interaction between nucleons?

What are the limits of nuclear stability?

How and where in the universe are the chemical elements produced?

What are the properties of nuclei and stronginteraction matter as encountered shortly after the Big Bang, in catastrophic cosmic events, and in compact stellar objects?

NuPECC Long Range Plan 2017 Perspectives in Nuclear Physics

Where and how was gold cooked?

Where and how was gold cooked?

The rp (rapid proton capture) -process

In binary systems white dwarfs are accreting mass from its companion, leading to explosive hydrogen burning

\rightarrow Novae

mass accretion of a **neutron star** leads to

 \rightarrow X ray bursts

Are Supernovae IIa the sites of the r-process??

Not excluded:

Supernovae IIa provide in the second of their outbreak a huge neutron flux creating a plenty of **unstable neutron-rich nuclei**

Multi-Messenger Astronomy

More than 50 other instruments

Where and how was gold cooked?

Masses: Fundamental Properties of Atomic Nuclei

- Binding energies
- Mass models
- Shell structure
- Correlations
- pairing
- Reaction phase space
- Q-values
- Reaction probabilities
- The reach of nuclei
- Drip lines
- Specific configurations
 and topologies
- > Nuclear astrophysics
- Paths of nucleosynthesis
- Fundamental symmetries
- Metrology
- ▶

Production Cross-Sections for Tin-Isotopes

Description of Nuclear Binding Energies

Production Cross-Sections for Tin-Isotopes

Devices for precision mass measurements

Penning trap

Storage ring

Secondary Beams of Short-Lived Nuclei

Heavy Ion Research Facility in Lanzhou (HIRFL)

BigRIPS + R3 Setup in RIKEN

Direct Mass Measurements on the Chart of the Nuclides

Direct Mass Measurement of ²⁰⁸Hg Nuclide

FAIR - Facility for Antiproton and Ion Research

General description – Main components

ILIMA: Masses and Halflives

Astrophysical reactions

The first (p,g) Measurement on 124Xe

CRYRING@ESR

The heavy ion storage ring TSR at MPIK Heidelberg

Circumference: 55m

Physics at Storage Rings

Single-particle sensitivity	High atomic charge states	Long storage times
Broad-band measurements	High resolving power	Very short lifetimes
Direct mass measurements of exotic nuclei		
Radioactive decay of highly-charged ions		
Charge radii measurements [DR, scattering]		
Experiments with polarized beams		
Experiments with isomeric beams [DR, reactions]		
Nuclear magnetic moments [DR]		
Astrophysical reactions [(p,g), (a,g)]		
	In-ring nuclear reaction	ns
Experimental Storage Ring ESR		
Experimental Cooler-Storage Ring CSRe		
Low energy ring CryRING@ESR		
RI-RING at RIKEN		
New Storage Ring Complex at FAIR		
New Storage Ring Complex at HIAF		
Low-Energy Storage Ring TSR at IMPCAS		
Low-Energy Storage Ring at ISOLDE, CERN		
DERICA at JINR, Dubna	Low-energy storage rings	at TRIUMF, RIKEN

DERICA Project

Neutron captures in inverse kinematics

Reifarth & Litvinov , Phys. Rev ST Accelerator and Beams, 17 (2014) 014701 Reifarth et al., Phys. Rev ST Accelerator and Beams, 20 (2017) 044701

erc ASTRUm

Ion Beam Facilities / Trapping & Storage

The Chart of Nuclides

Standard Abundance Distribution

FZ !

GEMEINSCHAFT

Predictive Powers of Mass Models

Predictive Powers of Mass Models

Calculated abundances assuming that one neutron separation energy is varied by 1 MeV

