

Superconducting rotating gantry for carbon therapy at HIMAC

Yoshiyuki Iwata

Department of Accelerator and Medical Physics, National Institute of Radiological Sciences (NIRS)

- Introduction
- Gantry development
 - Design
 - Construction
 - Beam commissioning
- Future plans
- Summary

Cancer Treatment

- 1. Surgery
- 2. Chemotherapy
- 3. Radiotherapy
 - Advantage: no pain, no infection
 - Kinds of radiation
 - X-rays (γ-rays)
 - Protons
 - Carbon ions

(particle beams)

- Expectation for (particle) radiotherapy
 - QOL (Quality Of Life) after the treatment
 - Small physical burden (good for aged people)
 - Effective for radiation-resistant tumors (Carbon-ion radiotherapy)

Comparison between X-ray and particle therapy

Comparison between X-ray and particle therapy

Advantage of ion therapy

Physical dose can be concentrated due to Bragg peak

(Carbon therapy)

- Lower multiple scattering in the lateral direction
- RBE (Relative Biological Effectiveness) is 2~3 times higher around the tumor

RBE is low as of p or X-ray

Comparison between X-ray and particle therapy

RBE is higher at tumor

Advantage of ion therapy

Physical dose can be concentrated due to Bragg peak

(Carbon therapy)

- Lower multiple scattering in the lateral direction
- RBE (Relative Biological Effectiveness) is 2~3 times higher around the tumor

Pioneer's work at LBL

- 1940's: R. Willson proposed the medical application of heavy-ion beams.
- 1957: LBL started clinical trials with Helium ions (2054 patients)
- 1975: Treatment with Neon ions was made (433 patients).
- 1992: The research had been aborted, due to the shutdown of Bevalac.

Biological and Medical Research with Accelerated Heavy Ions at the Bevalac, LBL-11220, UC-48 (1980).

E.A. Blakely et al., Adv. Radiat. Biol. 11, 295 (1984).

W.T. Chu et al., Rev. Sci. Instrum. 64, 2055 (1993).

World-first heavy-ion medical accelerators

- HIMAC Heavy Ion Medical Accelerator in Chiba
 - 1984: Project was funded by Japanese Government
 - 1987: Construction began
 - 1993: Beam commissioning
 - 1994: Clinical trials began

Gantry Development

New treatment facility

- New development
 - Fast 3D raster scanning

Superconducting rotating-gantry

3 treatment rooms

Room E & FFixed H&V scanning ports

Room GRotating-gantry port

Construction completed in 2011

NIRS HIMAC

Irradiation using fixed irradiation ports

Treatment for a lung cancer with 4 directions

By using a rotating gantry

Advantage of a rotating gantry

- 1. No need to rotate a patient
- 2. Precise dose distribution
- IMPT (Intensity Modulated Particle therapy)

Beam can be directed to a target from any of medically desirable directions

Rotating gantry for hadron therapy

Proton therapy

- Gantries are commonly used
- Commercially available

Carbon therapy

- Required Bp is 3 times higher
 - Magnets will be very large and heavy
- Difficult to
 - Design
 - Construct

Rotating gantry for carbon therapy

- World-first carbon-gantry
 - HIT @ Heidelberg, Germany
 - State-of-art gantry
 - Clinical use since Nov. 2012

Design of SC rotating-gantry

Superconducting rotating-gantry

Use of superconducting (SC) magnets

Ion kind : 12C

Irradiation method: 3D Scanning

Beam energy : 430 MeV/n

Maximum range : 30 cm in water

Beam orbit radius: 5.45 m

Length : 13 m

Superconducting rotating-gantry

Use of superconducting (SC) magnets

Ion kind : 12C

Irradiation method: 3D Scanning

Beam energy : 430 MeV/n

Maximum range : 30 cm in water

Beam orbit radius: 5.45 m

Length : 13 m

The size and weight are considerably reduced

Layout of the SC gantry _____

Layout of the SC gantry

Layout of the SC gantry

Layout of the SC gantry

Curved SC magnets for gantry V

SC magnet (BM02-05)

Curved SC magnets for gantry

SC magnet (BM02-05)

Cross-sectional view

Specifications of SC magnets

Parameters	Symbol	Unit	BM01	BM02	BM03	BM04	BM05	BM06	BM07	BM08	BM09	BM10
Туре			Superconducting sector magnet									
Coil			Dipole+Quard.						Dipole		Dipole+Quard.	
Bending angle	θ	deg	18	18 26 18				22.5				
Bending radius	ρ	m	2.3						2.8			
Maximum field	B _{dipole}	T	2.88						2.37			
Maximum field gradient	G _{max}	T/m	10						□ 1.3			.3
Bore size	D _{bore}	mm	φ60						122	170	- 2	206
Effective radius or area	D _f or A _f	mm	φ 40						120	□ 160	- 2	200
Uniformity (dipole)	ΔBL/BL		± 1× 10 ⁻⁴									
Uniformity (quadrupole)	ΔGL/GL		± 1× 10 ⁻³									
Inductance (dipole)	L	Н	6.2		9	.1		6.2	5.2	8.9	1	2
Stored Energy (dipole)	P	kJ	57		8	4		57	133	225	3	19

Construction of SC rotating-gantry

Construction of SC magnets

Construction of structure

Construction and tests

Construction and tests

Rotation tests at Toshiba

Transportation#2

Installation to NIRS

Installation to NIRS

Treatment room

Treatment room G

SC gantry

Beam commissioning

Beam commissioning began since Oct. 2015/

Angular dependence

The SC quadrupole of BM05 was finely tuned, so as to obtain circular beam spots at the

isocenter.

Energy dependence

 Beam tuning was made for 201 kinds of beam energies for E=430~55.6 MeV/u.

Energy dependence

Beam tuning was made for 201 kinds of beam energies for $E=430\sim55.6$ MeV/u.

Energy dependence of beam sizes at isocenter (45 degrees)

Average beam sizes as a function of gantry angle and RID

Energy dependence

Beam tuning was made for 201 kinds of beam energies for $E=430\sim55.6$ MeV/ \cup .

Parameter sets were interpolated to provide beams by angular step of $\Delta\theta$ =1 degree.

Centering beam spots

Centering beam spots

After series of beam commissioning, treatment using the gantry began since May 2017!

Future plans

2nd-generation SC gantry

 A compact facility for CIRT is being constructed at Yamagata University.

2nd-generation SC gantry

- A compact facility for CIRT is being constructed at Yamagata University.
- 2nd-generation compact gantry will be installed.

3rd-generation SC gantry

Combined function SC magnets (B_{max}~5 Tesla)

A size and weight will be smaller than those of

proton gantries

- CIRT using HIMAC has been performed since 1994, and more than 11,000 patients were treated at NIRS.
- The SC gantry as well as the fast 3D raster-scanning irradiation, were developed.
- After series of the commissioning works, <u>cancer</u> treatment using the SC gantry began since May 2017.
- The <u>next-generation compact gantries</u> are being developed.

Collaborators

- T. Shirai, T. Fujita, T. Furukawa, Y. Hara, S. Matsuba,
 K. Mizushima, T. Murakami, K. Noda, N. Saotome,
 Y. Saraya, S. Sato, T. Shirai, R. Tansho (NIRS, QST)
- T. Fujimoto, H. Arai, et al. (AEC)
- T. Ogitsu (KEK)
- T. Obana (NIFS)
- N. Amemiya (Kyoto Univ.)
- T. Orikasa, S. Takayama, et al. (Toshiba Corp.)

Design of SC coils

HIMAC

3D field calculation with Opera-3d

SC coils were precisely modelled

NIRS HIMAC

3D field calculation with Opera-3d

SC coils were precisely modelled

Corrections with the outermost layer

Coil positions of the outermost layer were modified to cancel out the measured multi-pole components

Corrections with the outermost layer

Coil positions of the outermost layer were modified to cancel out the measured multi-pole components

Corrected uniformity

