# Measurement facility and test results for FRIB superconducting magnets at IMP YANG Wenjie<sup>1,2</sup>, WU Beimin <sup>2,3</sup>, WU Wei<sup>2</sup>, NI Dongsheng<sup>2</sup>, MEI Enming<sup>2</sup>, MA Lizhen<sup>2</sup>

- 1. University of Chinese Academy of Sciences
- Institute of Modern Physics, Chinese Academy of Sciences
- The Key Laboratory of Mechanics on Western Disaster and Environment, College of Civil Engineering and Mechanics, Lanzhou University
- Michigan. The FRIB driver linac can accelerate all stable isotopes to energies beyond 200 MeV/u at beam powers up to 400 kW.
- short and 71 long magnets. IMP undertaken the simulation design and 30 of the them have been tested at IMP.

## II Introduction of the SC magnet

Each SC magnet package consisting of:

- (1) A main focusing SC solenoid
- ② SC dipole correctors (both horizontal and vertical)
- (3) A helium vessel
- (4) A stray field suppressor (bucking coils)

(5) A quench protection system (protection by diodes)

6 Fiducials for showing the magnetic axis of the solenoid coil

| Parameter                                                        | Unit             | Long SC               | Short SC              |  |  |  |
|------------------------------------------------------------------|------------------|-----------------------|-----------------------|--|--|--|
| Operation temperature                                            | К                | 4.5+0.5/-0.0          | 4.5+0.5/-0.0          |  |  |  |
| Main solenoid nominal current                                    | А                | 90                    | 90                    |  |  |  |
| Peak solenoid filed at Inom                                      | Т                | 8                     | 8                     |  |  |  |
| ∫B <sub>z</sub> <sup>2</sup> dz at Inom                          | T <sup>2</sup> m | 28.2                  | 13.6                  |  |  |  |
| ∫B <sub>z</sub> <sup>2</sup> dz uniformity within 80%*R          | %                | 2                     | 2                     |  |  |  |
| ∫B <sub>x</sub> dz, ∫B <sub>y</sub> dz,integrated field strength | Tm               | 0.06                  | 0.03                  |  |  |  |
| ∫B <sub>x</sub> dz, ∫B <sub>y</sub> dz uniformity within 15mm    | %                | 5                     | 5                     |  |  |  |
| Maximun current of dipole                                        | А                | 19                    | 19                    |  |  |  |
| maximum tolerated magnetic stray field                           | Т                | 0.027<br>(z ≥ 390 mm) | 0.024<br>(z ≥ 260 mm) |  |  |  |

#### Cooling down and training

Pre-cooling by LN2 to reduce the consumption of LHe

- •Minimum ramp rate of 0.5% of nominal current per second.
- Solenoid magnet training
- Dipole correctors training
- Solenoid and correctors triple training simultaneously.

•Most of the SC magnet reach their nominal field without quenches. Some of the them needs two or three times training.

### **Field integral**

The solenoid field Bz measured at I<sub>nom</sub> every 5 mm along the zaxis

 $-400 \text{ mm} \le z \le +400(50 \text{ mm})$ 

Ke

-200 mm ≤ z ≤ +200 (25mm)

In order to obtain integrated squared field.  $\int Bz^2 dz$  [T<sup>2</sup>m ]  $\clubsuit$  Rotating the measuring rod can dipole increments  $\int Bx dz$  and  $\int$ Bydz respectively.





Field distributed of solenoid



#### **I** Overview

> The Facility for Rare Isotope Beams (FRIB) will be a new national user facility for nuclear science. It is funded by the DOE-SC, MSU and the State of

> FRIB SC magnet are used to focus and steer the heavy ion beams of the driver linac. 80 magnets have purchased from XSMT Co. Ltd, China. It Include 9

- ✓ Due to the stringent space restriction inside the cryo-modules, the solenoids is designed as compact as possible.
- Solenoid coil length is 25cm and 50cm respectively.
- ✓ Cold bore inner diameter is 40mm.
- $\checkmark$  The helium vessel made of 316L stainless steel to minimize remanent. field. The welding done in a way to minimize remanent field.
- $\checkmark$  Perpendicularity tolerance between the X and Y dipoles is 1 degree.
- Deviation of the field center from the mechanical center within 0.3mm. ✓ The Helium vessel shell diameter is 304.8mm. The length of the SC magnet is 589.53mm and 349.76mm respectively.



50cm SC

### Determining solenoid field axis

- The alignment scans are performed at both ends of the solenoid Preferably where the Br component is a maximum
- $\bullet$  The increments of measurement is set 45° at I<sub>nom</sub> (dipoles off) • Fit data using sin wave to get the orientation of the misalignment.



- The requirement of deviation of the field center from the mechanical center are smaller than 0.3 mm.
- After the cold test, we mark the field center on the helium vessel for the solenoid alignment.

### III Measurement facility at IMP



#### TCF10 cryogenic plant (35L/h)





temperature.

> It is the first time for serial cold test of SC magnet at IMP and all of them are accepted by FRIB.  $\succ$  The measurement facility works well during the test . Can't get the stray field and the uniformity. >The vertical test consume more time and LHe, and has a great risk of failure.(Data acquisition failure, move not smooth etc.)

| NO      | Solenoid Field | Integrated field of dipole | Integrated Field of solenoid | Mechanical Center error | Quench |  |
|---------|----------------|----------------------------|------------------------------|-------------------------|--------|--|
|         | /T             | /Tm                        | /T²m                         | /mm                     | times  |  |
| 25cm SC |                |                            |                              |                         |        |  |
| 1       | 8 (87.96A)     | N/A                        | 14.408                       | 0.305                   | 0      |  |
| 2       | 8 (87.3A)      | 0.036 (19A)                | 13.87                        | -0.285                  | 1      |  |
| 3       | 8 (88.44A)     | 0.042 (19A)                | 13.85                        | 0.373                   | 1      |  |
| 4       | 8 (86.8A)      | 0.03 (19A)                 | 13.8                         | -0.284                  | 3      |  |
| 5       | 8 (86.8A)      | 0.031 (19A)                | 13.76                        | 0.2                     | 0      |  |
| 6       | 8 (86.8A)      | 0.03 (19A)                 | 13.73                        | 0.145                   | 0      |  |
| 7       | 8 (86.8A)      | 0.032 (19A)                | 13.77                        | 0.282                   | 0      |  |
| 8       | 8 (86.75A)     | 0.031 (19A)                | 13.78                        | 0.042                   | 0      |  |
| 9       | 8 (87.3A)      | N/A                        | N/A                          | 0.203                   | 0      |  |
| 50cm SC |                |                            |                              |                         |        |  |
| 1       | 8 (89.8A)      | 0.078 (19A)                | 28.291                       | 0.298                   | 0      |  |
| 2       | 8 (89.86A)     | 0.06 <u>(19A)</u>          | 28.263                       | 0.153                   | 0      |  |
| 3       | 8 (88.36A)     | <u>N/A</u>                 | 28.324                       | 0.307                   | 0      |  |
| 4       | 8 (88.98A)     | N/A                        | 29.153                       | 0.172                   | 0      |  |
| 5       | 8 (86.4A)      | 0.084 <u>(19A)</u>         | 30.809                       | 0.135                   | 2      |  |
| 6       | 8 (87.4A)      | 0.08 <u>(19A)</u>          | 30.05                        | 0.398                   | 2      |  |
| 7       | 8 (89.9A)      | 0.066 <u>(19A)</u>         | 28.3                         | 0.267                   | 0      |  |
| 8       | 8 (87.40A)     | 0.066 <u>(19A)</u>         | 28.1                         | 0.347                   | 0      |  |
| 9       | 8.09 (90A)     | 0.062 (19A)                | 28.77                        | 0.186                   | 0      |  |
| 10      | 8.04(90A)      | 0.063 <u>(19A)</u>         | 28.46                        | -0.274                  | 0      |  |
| 11      | 8 (87.3A)      | 0.063 <u>(19A)</u>         | 28.2                         | 0.173                   | 1      |  |
| 12      | <u>8 (90A)</u> | 0.063 <u>(19A)</u>         | 28.24                        | 0.275                   | 0      |  |
| 13      | 8 (89.9A)      | 0.063 <u>(19A)</u>         | 28.5                         | 0.11                    | 0      |  |
| 14      | 8.02 (90A)     | 0.064 <u>(19A)</u>         | 28.64                        | 0.257                   | 0      |  |
| 15      | 8.04 (90A)     | <u>0.064 (19A)</u>         | 28.65                        | -0.102                  | 1      |  |
| 16      | 8.04 (90A)     | 0.064 (19A)                | 28.56                        | 0.290                   | 0      |  |





中国科学院近代物理研究所 Institute of Modern Physics, Chinese Academy of Sciences



#### V Conclusion