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1. Introduction

» High Intensity heavy-ion Accelerator Facility (HIAF)
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Ot is important to fully study
high intensity effects in
the HIAF/BRing.



1. Introduction

» Many complicated beam manipulations, entirely new dynamics schemes, and innovative

Innovations

Properties

technologies and designs will be applied in the HIAF/BRing.
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The coupling effects
of those complicated
dynamics and high
intensity effects must
be evaluated by
highly accurate
simulations closer

to real situations.

Severe nonlinear effects _J

Powerful tools
needed urgently!
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2. Development of CISP-GPU o

m - —

An advanced software platform CISP and its GPU version are developed to

/7
BTN ASIN T &
https://cisp.accsoftware.cn

Particles
Slices Beam
Coasting, bunched longitudinal dist.
KV, Gaussian, uniform transverse dist.
Bump magnets . s
pmag Injection

Electrostatic septum

Kickers

Oneturn map

Point-to-point maps

Thick drift, dipole and quadrupole maps

Fﬂwf

Tune ramping

Chromaticity ramping

Transition energy ramping

Acceleration

Bunch merging and splitting

Longitudinal Dynamics

Barrier Bucket

Excitor for slow extraction

Kicker for fast extraction >‘| Extraction

SRR R AR &

simulate high intensity effects and their coupling effects in all manipulations

Simulation Platform for Collective Instabilities

Simplified longitudinal space charge

Gr-PIC for free space

\_ Gr-PIC for rectangle boundary

Space Charge

=

/{ Feedback |<_ Kicker

Wake given by data sheets
RLC wake

Resistive wall wake

-

Auto-detection of coasting,
single-bunched and multi-
bunched beams

Beam parameters

\{ Beam Diagnostics

Phase spaces

Incoherent tunes

Extraction

Circle

upole
Rectangle
; Ellipse e
CeratE fields

Arbitrary shapes

ALC

(W

O)
/ 7\



https://cisp.accsoftware.cn/

2. Development of CISP-GPU
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All beam dynamics
simulations are performed
in the GPUs to get much
higher performance

Low noise and high accuracy
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« Maximal capability of CISP-GPU (1 GPU) ~ 108 macroparticles, 10° beam slices for wake simulations

« Study the interaction between ultra-short wakes and ultra-long bunches or dynamics like this situation,
as well as many other coupling dynamics of high intensity effects in ion accelerators



2. Development of CISP-GPU — Wakes

» Transverse mode coupling instability
in the SPS, CERN
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*DELPHI (Discrete Expansion over Laguerre Polynomials and Headtall modes), N.Mounet, N.Biancacci, D.Amorim, CERN
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The growth rates given by the CISP-GPU are

proportional to the beam intensities, and the

deviation of slopes from DELPHI is less than 10%.

The phase advance of adjacent bunches is

0.285m in the simulations, indicating (1-Q) line.



2. Development of CISP-GPU - Space Charge @{% HIAF>

» Space charge fields and tune spreads: CISP-GPU < Theory
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2. Development of CISP-GPU — Nonlinear Fields

> Phase spaces with sextupole magnets: CISP-GPU «~ MADX PTC’
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The phase spaces given

by CISP-GPU and MADX
PTC are almost the same,
and similar stable islands

are identified from inside

to outside in two methods.

CISP-GPU is ready for the studies of beam dynamics in the HIAF/BRing!

*MAD - Methodical Accelerator Design, BE/ ABP Accelerator Beam Physics Group, CERN
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3. Nonlinear and Space Charge Effects i

» Concentrating on incoherent effects
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» Coherent effects of space charge fields still wait for further studies.

Nom Y

*Space charge and lattice driven resonances at the CERN injectors, Foteini Asvesta, PhD Thesis, CERN and National Technical University of Athens, 2020 12




3. Nonlinear and Space Charge Effects — Field Errors

> Investigate 3" order resonances stimulated by sextupole errors
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Theory: H™W = Z Mo i (2J2) 2
Jkim

*Studies and Measurements of Linear Coupling and Nonlinearities in Hadron Circular Accelerators, Andrea Franchi, Thesis: PhD Universitat Frankfurt/M. (2006)
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2 correctors
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((mulmi K .7(}112![:71 4] I

6 normal sextupole
magnets and 4 skew
sextupole magnets are
needed to compensate 3
normal sextupole and 2
skew sextupole driven

resonances.
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3. Nonlinear and Space Charge Effects — Field Errors

> If considering zero intensity situation, the total sextupole error strength and direction

could be measured by BPMs, and compensation scheme could be calculated dlrectly
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The effects of correctors to the resonances
are also generated by CISP-GPU simulations.

Simulations and theory calculations agree with each other very well, which

makes it possible to conduct resonance compensation experiments.
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3. Nonlinear and Space Charge Effects — Field Errors 1tp

Real Part

Imaginary Part

> A zero-intensity experiment is conducted on the Space Environment Simulation and Research
Infrastructure, SESRI, to compensate 3Q, = N resonance with two sextupole correctors.
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3. Nonlinear and Space Charge Effects — Field Errors > HIAE>

—_

» When considering strong space charge fields (high intensity situation), the previous method
is still work for third order resonances except that the phases and betatron functions at all
sextupole errors and correctors are different from the zero-intensity situation(?)
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compe J S | Redistribution due to beam loss from 39.86% to 0.54%
order resonances 3 15} space charge fields which is close to the linear situation.

in the CISP-GPU 10}
simulations 5L
of = =

O Still need more work ~
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3. Nonlinear and Space Charge Effects — Structural Res. < <HIAE

» Theory indicates that resonances of mQ, + nQ, = 36 or 39 could be driven by space charge
itself with periodic lattice in the HIAF/BRing, which is verified by the CISP-GPU simulations.

6

- Tune Scan Beam Loss Map (No Error)

-

« Structural resonances

5 mQ, +nQ, = 36 or 39
are also identified in the

14 CISP-GPU simulations.
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o CISP-GPU Simulations
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4. Collective Instabilities

[
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3D-printed titanium alloy cages introduce extra

0.3 mm stainless steel chamber leads to large
resistive wall impedance in the low frequencies?

Resistive wall
impedance is
calculated by IW2D

Other impedances
are simulated by
CST Studio or
calculated by
theory models.
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4. Collective Instabilities — Heavy lon Beams iz <Ll

> Heavy ion beams share the same beam manipulations in the HIAF/BRing. "8Kr'%*

beams have the highest effective intensity Z?/A. They are used as reference beams.
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If the chromaticity is corrected to 0 as designed, transverse mode coupling instability (TMCI) and
transverse coupled bunch instability (TCBI) could happen.
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4. Collective Instabilities — Heavy lon Beams r> <104
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4. Collective Instabilities — Heavy lon Beams

> 1st way to stabilize heavy ion beams — chromaticity

Growth rate (s™1)
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BRing runs below the transition
~energy, so negative chromaticity
"~ shifts the power spectra to the

stable direction, which is better!
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« When § = —4~ — 5, the TCBI in the heavy ion beams are completely stabilized. The chromaticity is still
less than the natural chromaticity of HIAF/BRing.

« Adjusting chromaticity is a feasible and effective way to stabilize the TCBI.
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4. Collective Instabilities — Heavy lon Beams > HIAES
» When adjusting chromaticity, transverse head tail instability may become serious.
Z-Y Space Multi-turn BPM signals in the simulation e
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A single-bunch instability 3 nodes means itis a m = 3 high Instability is related to
order head tail instability the peak of impedance
- g ¢wo m(m+1)]«
 Transverse head tail instability is related to & by w; = S - lwr — T—]
L
« The peak around frequency of 5 kHz can drive the head tail instability of m = 3 ~ 4, which means the
resistive wall impedance along with ¢ drives this instability. £ should be chosen carefully.
23

*Physics of Intensity Dependent Beam Instabilities, K Y. Ng (Fermi National Accelerator Laboratory, USA), World Scientific, December 2005
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4. Collective Instabilities — Heavy lon Beams i

o

> 2"d way to stabilize heavy ion beams — wideband feedback system designed for BRing

Slice the Get the Slice the Give the kick
beam into ¥ position of a beam into ¥ to particles in
several bins slice several bins every slice

[rmfj | [JKMT [ :

1 Pz X3 Xa |one PXn s Ax) = g-x, jzzxé:x; x,’,i

Simplified model in the msp-eD
Ring

The wideband feedback system designed
for the BRing can stabilize the TCBI in the
acceleration process of 78Kr19%* beams.

All heavy ion beams in the BRing could
be stabilized by this feedback system.

More detailed model will be implemented.

Vertical Bunch Center (mm)

v" Maximal Bandwidth: 40 kHz (7 100 MHz

v" Maximal Total Voltage of All Kickers: 20 kV

v Delay of Signal from Pickup to Kicker: 1 turn

| ! | ! I ! | ! I ! |
200 ||~ FEEDBACK OFF
—— FEEDBACK ON
100
=
-100
-200
| ) | 1 1 L | 1 1 X |
0 100 200 300 400 500
Time (ms)

600
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4. Collective Instabilities — Proton Beams
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> Quite different manipulations are designed in the proton beams of HIAF/BRing.

std ke(MeV/u) over time(s)

8000 ~

6000

| 4000 ~

std ke(MeV/u)

2000 ~

2nd Acceleration
in_ harmonic 1

y

1st Acceleration
in-harmonic 2

Compressing

= =
Bunch

and
Extraction

Injection Bunch merging
and 22>1
Capturing N =
®
dﬂ dl dz dE Gh
time(s)

0.5

13.00
12.80

An ideal curve

12.60

2o used in the

" simulations

11.60

11.40

11.20
0320 0340 0360 0.38 0400 0420 0440 0460 0480 0500 0.520

Time (s)

In the 2"d acceleration, y,
ramps from 11.28 to 12.83,
which begins at about 6 GeV.

* y: =12.83 and yp.qm = 10.98 at the extraction, and n = —0.0022. It is quite difficult to merge bunches
before the extraction in a reasonable time. Bunch merging is performed at the energy of about 500 MeV.

« TCBI may exist in the 15t acceleration and TMCI may exist in all (quite possible in the 2"d acceleration).
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4. Collective Instabilities — Proton Beams wz> HIAE>
> In the 1st acceleration, CISP-GPU simulations identify a TCBI.
y_center(m) over time(s) zy
0.20 0.15 4 T T T T T T T T T T T T
= data .
) f\\ / b e T
0.10 E Ll / ‘«. | .\ . ST e |
. 0.05 ] - = 1 & A ¢ soossa 1771 s | 3
E 0.00 - E o000 {. [.J %O_ / | / \ / \ [
E—o.o:a- L'_ — " 5-1 — | | ; "‘ ‘. / -
-0.10 —0-057 _‘g_z_ l / \ \ | _
015 - -010{  Bunch displacements and >_3‘_ \./ U \'/ )
020 | 15t stage distortions show a TCBI (m=0) e
0.0 0.1 0.2 0.3 0.4 0.5 o 200 100 0 100 200 9000 9001 9002 9003 9004 9005 9006
time(s) z (m) Turns
leé
7 — H
[\ —_ VY
Eet [ * In the theory, the strongest mode is also at the (1-Q) line, i.e.,
g7 (g, m) = (—5,0,0) and A¢,q; = —0.570m.
E "
é ] * The phase advance between 2 adjacent bunches is 0.570 in the
: simulation. Resistive wall impedance could drive the TCBI of the
o proton beams in the 1st acceleration.
10° 16‘ 1(IJ"' I(IJ“’ I(I)" I(')’3 lé" 1(;;’0 Id”

Frequency (Hz) 26



4. Collective Instabilities — Proton Beams B> HIA

> In the bunch merging, a special coupled bunch instability is observed via CISP-GPU.

150 I ! I N | ! I N 1 ! I 33 ! I v v LI N I ! I
] : : ' 6.0
Bunch 1 3.0 Bunch 1

g 100r Bunch 2| 7] ot Bunch 2 &
E g 2.7 — 2y 5.4 o
et = S *
[0 *x [ 3k - -
t 0r T < 24t =
) @ 48 2
@) s [ €
< E 21F ’ S
8 0 - S =z
S zZ - 42 g
m o 18 F O
© .0 | %
g -50 |- . S 150 36 O
[ o =
> [ ©

-100 F - 1.2 4 R 130 —

- Exchange particleg
' O 0.9 - : ; between bunches
-150 1 \ 1 A 1 \ 1 . 1 ) 1 ) 1 - 1 N 1 ) 1 \ 24
160 200 250 300 350 400 200 210 220 230 240 250
Time (ms) Time (ms)

When beam loss becomes serious (between
dash lines), the rear bunch loses much
more particles than the front bunch.

Both 2 bunches experience similar
displacement, which is a TCBI

* In the bunch merging manipulation, the proton beams of HIAF/BRing could be influenced by TCBI,
but the particle loss in the front bunch and the rear one is quite different.



4. Collective Instabilities — Proton Beams s> <HIAFE>

real(v —vg)/vs

> In the 29 acceleration, CISP-GPU simulation gives an instability ~ TMCI.

Vertical Bunch Center (mm)
(=]
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[=]
[=]

|
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L

I
n
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L

—154

y_center(m) over time(s)

A single-bunch
instability occurs

T T T
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30

20 -

10 -
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moves to the , | is at the tail
' head and ' : :

Turn 75000 4

15 -20 -15 -10 -5 0 5 10 15
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20

1
Intensity

L g

Mode =@ =t
couplin%l Tha -

« The synchrotron tune is about 4x 10-%, which
means the beam loss happens (in about 5000
~ 6000 turns) before the distortion at the tail
of bunch moves to the head completely.

* There are alternatives between coupling and
decoupling when intensity increases, as the
bunch is very long while the wake is very short.
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4. Collective Instabilities — Proton Beams

» Chromaticity and wideband feedback system

can also stabilize the proton beams.

Vertical Bunch Center (mm)

0.3 1

0.2

0.1 1

0.0 1

0 100 200 300 400 500
Time (ms)

The chromaticity is about -5 which is feasible.

The bandwidth of wideband feedback system will be
upgraded at least to 500 MHz in the future.
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4. Collective Instabilities — Proton Beams mz> HIAF>

> Is it possible that the space charge effects in the proton beams stabilize the TMCI?

Vertical Bunch Center (mm)

T 187 particle_num over time(s)
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y_center(m) over time(s)

ooro ] * To make the simulation easier, a much
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’:e. (@) .
. 7§ 20 mode coupling and beam loss occur.
R~ S
m
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=
Without space char 2 oot | is no beam loss. Growth still exists,
CISP-GPU and DEL%-II : but it disappears after tens of ms.
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5. Conclusions and Discussion wr> HIAE >

+ A software platform CISP and its GPU version are developed to simulate high intensity effects and their
coupling effects in high intensity heavy ion accelerators.

« CISP is applied to HIAF/BRing, which makes the dynamics simulations closer to the actual situations.

 The compensation scheme is efficient for 3" order resonances from sextupole errors in the zero-intensity
situation. It is also feasible for high intensity situation, but how to include space charge needs further research.

« Adjusting tunes is a way to suppress structural resonances but may lead to new problems in other dynamics.

« Heavy ion beams in the HIAF/BRing will experience transverse coupled bunch instability. And They
could be stabilized by adjusting chromaticity or the wideband feedback system.

« Transverse coupled bunch instability and transverse mode coupling instability will influence the
proton beams in the HIAF/BRing. They could also be stabilized by adjusting chromaticity. And the band-
width of the wideband feedback system should be upgraded to 500 MHz to stabilize the TMCI in the future.

« Space charge can change the modes and stabilize the TMCI in the preliminary simulations. But how
space charge fields interact with broadband impedances in the TMCI of HIAF/BRing is still not clear.

« Still a lot of work on the way to be ready for the high intensity beam commissioning in the HIAF/BRing!
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S. Conclusions and Discussion wiz> HIAF >

« A protocol CVLink and its Large-Scale Accelerator Control System LACCS are under
development to fulfill total integration, high performance and high intelligent required by HIAF.

dec data: 1A00000000000000623139322E3 © B /
LACCS Node enc data: 20C6FDOA272EF6AB240459C244¢ [ 277 4 cung [
dec data: 1A00000000000000623139322E3 | —

NodeP Schedul enc data: A69539FD2C14B3AD17C35BAA0¢ —=8
oderrocess cheauler dec data: 1A00000000000000623139322E3

enc data: C30C1294FC6579B490BE47458D1

dec data: 1A00000000000000623139322E3
enc data: B3BAESF8CA41E39102A1B4CESC|
3

Encryption for
high security

BashLink CVLink Control dec data: 1A000000000000006231393

enc data: 3CF0968C9A2CAIF0549B044 B¢ - *

; : : : dec data: 1A00000000000000623139 ) Y

DBLink DevicelLink EPICSLink enc data: FBDFD6972EF77E0899E81B6
Event
EPICSServer LogServer LogClient
PythonLink Diverse features for Multi-task kernel for X _
diverse requirements high performance
CVLib CVDB P

* In the future, CISP-GPU will be embedded

LAC CS + CISP into LACCS to provide high level features

o U115 B8 £ g ] EAMMRITFEE  for beam commissioning and online
dynamics research in the whole HIAF.
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