Beam Instability Issue and Transverse Feedback System in the MR of J-PARC

Takeshi Toyama J-PARC/ KEK

Coauthors

Aine Kobayashi

Takeshi Nakamura

Masashi Okada

Yoshihiro Shobuda

Makoto Tobiyama

Collaborators

Yong Ho Chin

Takashi Obina

Keigo Nakamura

Yoshinori Kurimoto

Shigenori Hiramatsu

Special Thanks

Dmitry Teytelman

Present observations in the MR In the SX mode

Recent stable routine operations ~ 64 kW (~7E+13 protons/pulse, 8 bunches)

"Bunch-by-bunch (Hor./Ver.) feed back system" is utilized

 $v_x \sim 22.30$, $v_y \sim 21.75$, $\xi_x = -5$, $\xi_y = -7.1$ (during debunching process)

Limiting factor to increase the SX beam power debunching @ 30 GeV flat-top → longitudinal microwave instability → electron cloud buildup → transverse instability, vacuum pressure rise, beam loss (to be confirmed that this is the electron cloud instability)

The transverse instability (e-p) seems to be triggered by a longitudinal micro-structure in debunch

M. Tomizawa, ATAC2021

J-PRRC

Present observations in the MR In the FX mode

Recent stable routine operations ~ 500 kW (~2.6E+14 protons/pulse, 8 bunches)

Transverse (Hor./Ver.) intra-bunch feed back system is an essential ingredient

Another essential ingredient is hor. & ver. chromaticity,

$$v_x \sim 21.34, v_y \sim 21.43$$

 $\xi_x = \Delta v_x / (\Delta p/p) \sim -6, \xi_y \Delta v_y / (\Delta p/p) \sim -8$

S. Igarashi et al., PTEP **2021**, 033G01

Transverse intra-bunch feedback

Transverse intra-bunch feedback

Transverse intra-bunch feedback

Stability of the MR

Vertical

CIPARE (AEA)

instability Dedicated beam experiment

 $v_x = 21.35, v_y = 21.45, \xi_x = \Delta v_x / \Delta p/p = 0.56, \xi_y = \Delta v_y / \Delta p/p = -0.37$ $\xi_x = (\Delta v_x / v_x) / \Delta p' p' = 0.020, \xi_y = (\Delta v_y / v_y) / \Delta p/p) = -0.017$

Vertical instability first occurs,

then horizontal instability occurs 10 ms after feedback OFF or later

Horizontal

Stability of the MR

150

instability

A (LPF)

2000

4000

6421 7350 8278

Routine operation @ v_x = 21.35, v_y = 21.44, ξ_x = -5.89, ξ_y = -7.89 Beam loss starts due to the instability **Stable** 20 Horizontal feedback is switched off * Number 10

> Growth and damping at the condition of N_B=2.3E+14

9579

11000 12000

Turn #

14000

16000

18000

Beam intensity variation. Several shots are overlapped in the figure.

t [s]

100

50

Stability of 8 bunches beam

Horizontal

instability

Growth rate measured with "75% ξ correction"

$$\xi_{\chi} = -5.89$$

Growth rate measured with "95% ξ correction"

 $\xi_x = -0.16$

Simulation in 2D (longitudinal + transverse 1D) with multi-triangles (without space charge effect)

Distribution representation as sums of linear interpolating functions (M=6). G. Sabbi, TRISIM user's guide, CERN SL/94-73(AP),1994.

Wake potentials of the unit triangle beam

Resistive wall wake potential of the SUS316L vacuum duct, modeled with a cylindrical pipe of inner diameter 160 mm, thickness 2 mm, and length 1567.5 m.

Wake model of the five fast-extraction kickers.

J-PARC

Single bunch instability @ injection flat-bottom (3 GeV)

 $\begin{array}{l} \nu_x = 21.36 \\ \xi_x = 0.64 \\ fundamental + 2^{nd} \ harmonic \ RF \end{array}$

 $\begin{array}{l} \nu_x = 22.41 \\ \xi_x = 0.64 \\ fundamental RF \\ no space charge \end{array}$

Comparison of simulation to the measurement.

without S.C. effect \rightarrow unstable Not all the impedance sources \rightarrow stable

Simulation, single bunch

simulation 0.003 $\begin{array}{l} \xi = -1 \\ \nu_x = 22.41 \end{array}$ TMCI 1e-10 0.002 Growth Rate [1/turn] Slow head-tail instability 0.001 0 Head-tail damping 1e-10 5e-11 -0.001 -5e-1 1e-10 -0.002 └── 0 10 20 30 40 50 NB [x1E+12]

Growth rate vs frequency multiplication factor.

The growth rate at frequency multiplication factor = 0 corresponds to operation without feedback.

Effect of the processing clock

Time interleaved sampling and kicking by two feedback systems

The timing of two systems is $\Delta T_{CLK}/2$ shifted.

Simulated results w/o and with the time interleaved sampling and kicking by two feedback system. Left: the same timing

Right: interleaved sampling and kicking with $\Delta T_{CLK}/2$ shift

Summary

✓ Present knowledge on the transverse instabilities in the J-PARC MR is reviewed

1. Vertical plane is more unstable than the horizontal,

reasonable considering vacuum duct geometry

- 2. Resistive wall seems dominant source, then kickers, more precisely under study
- 3. Space charge instability suppression is observed
- \checkmark Intra-bunch feedback system works well upto the beam power ~ 500 kW
- ✓ Above 500 kW some improvements of the feedback are necessary
 - 1. Time interleaved sampling and kicking
 - with the current processing frequency, 64 x f_{RF} (or slightly higher 96 x f_{RF})
 - 2. Doubling the processing clock frequency: 64 x f_{RF} \rightarrow 128 x f_{RF}