Recent progress on nonlinear beam manipulations in circular accelerators

A. Bazzani¹, F. Capoani^{1,2}, <u>M. Giovannozzi</u>²

¹Department of Physics and Astronomy, University of Bologna, Bologna, Italy ²CERN Beams department, Geneva, Switzerland

Shaping transverse beam distributions

- Exploit nonlinear effects in tranverse motion:
	- Change phase space topology (new separatrices, islands)
- Slow variation of parameters
	- Change surfaces of phase-space regions
	- Perform particle trapping & transport in phase-space regions
- Manipulate transverse beam distribution:
	- Beam splitting
	- Sharing of transverse emittances
	- Cooling of annular beams

Theoretical frameworks

Hénon-like maps

$$
\begin{pmatrix} q_{n+1} \\ p_{n+1} \end{pmatrix} = R(\omega_0) \begin{pmatrix} q_n \\ p_n + f(x_n) \end{pmatrix}
$$

 \rightarrow interpolating Hamiltonians

U

Separatrix crossing theory

$$
P_{III\rightarrow i} = \frac{dA_i/dt}{dA_{III}/dt}
$$

$$
J_f = A_i/2\pi
$$

Poincaré-Birkhoff theorem

The starting point: Multi-Turn Extraction (MTE) Hénon map:

$$
\begin{pmatrix} x_{n+1} \\ p_{n+1} \end{pmatrix} = R(\omega_0) \begin{pmatrix} x_n \\ p_n + x_n^2 \end{pmatrix}
$$

 $\omega_0 \approx 2\pi r/s$: s islands.

- split beam in $s + 1$ beamlets
- used for beam transfer from PS to SPS

The starting point: MTE

Split beam structure along the ring

Example of a measured beam profile of a split beam

Extending MTE: an external exciter

$$
\begin{pmatrix} x_{n+1} \\ p_{n+1} \end{pmatrix} = R(\omega_0) \begin{pmatrix} x_n \\ p_n + x_n^2 + \varepsilon x_n^{\ell-1} \cos(\omega t) \end{pmatrix}
$$

 $ω_0$ fixed, $ω ≈ mω_0$: m islands.

−0.15 0 0.2 $\varepsilon = 0, \, \omega = \omega_{\text{i}} < \omega_0$

 -15 $\varepsilon > 0, \, \omega = \omega_i$

−0.15 0 0.2 $\varepsilon > 0, \, \omega = \omega_f < \omega_i$

Extending MTE: an external exciter

- Trapping explained via time variation of islands' surface for maps and Hamiltonians
- Scaling laws, parameter dependence established
- Possibility of beam splitting without varying tune

Sharing transverse emittances 4D Hénon-like map

$$
\begin{pmatrix} x' \\ p'_x \\ p'_y \end{pmatrix} = R(\omega_x, \omega_y) \begin{pmatrix} x \\ p_x + \text{Re } f(x, y) \\ y \\ p_y - \text{Im } f(x, y) \end{pmatrix}
$$

- Resonance: $\delta = m \omega_x n \omega_y \approx 0$
- 2D Hamiltonian, $I_2 = mJ_x + nJ_y$ approximately conserved
- Vary ω_x , $\omega_y \rightarrow$ separatrix crossing
- For each particle, can we make

$$
J_{y,f}=(m/n)J_{x,i} \implies \varepsilon_{x,f}=(m/n)\varepsilon_{y,i}
$$
?

Sharing transverse emittances $m = 1, n = 2:$

Sharing transverse emittances

- Studied 2D Hamiltonian and 4D map models, exchange mechanism explained via separatrix crossing theory
- Resonances higher than 3: presence of additional fixed points \rightarrow more phase-space regions
- Improved adiabatic theory: error on final J depends on adiabaticity
	- Resonance (1, 2) and higher: power-law
	- Resonance $(1, 1)$ (coupling resonance): exponential

Sharing transverse emittances: linear coupling

- Exponential behaviour of coupling exchange already observed: now explained with adiabatic theory
- Relationship between coupling strength and adiabaticity established

Cooling an annular beam

- AC dipole & nonlinearity: $H = \omega_0 J + \Omega_2 J^2 / 2 +$ $\varepsilon\sqrt{2J}\cos\phi\cos\omega t$
- vary ω , ε ; engineer areas to optimize trapping & transport: up to 90% cooling

Cooling an annular beam

Next steps

- Design experimental configurations to perform beam tests of some of these techniques (mainly on PS).
- Study the double-resonance case, like in the MTE case, in which the resonance crossing is improved by means of an AC dipole.

home.cern