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Shaping transverse beam distributions

• Exploit nonlinear effects in tranverse motion:
• Change phase space topology (new separatrices,

islands)
• Slow variation of parameters

• Change surfaces of phase-space regions
• Perform particle trapping & transport in phase-space

regions
• Manipulate transverse beam distribution:

• Beam splitting
• Sharing of transverse emittances
• Cooling of annular beams

HB2021 poster session Recent progress on nonlinear beam manipulations 2



Theoretical frameworks
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The starting point: Multi-Turn
Extraction (MTE)
Hénon map:(
xn+1

pn+1

)
= R(ω0)

(
xn

pn + x2
n

)
ω0 ≈ 2πr/s: s islands.

• split beam in s + 1
beamlets

• used for beam transfer
from PS to SPS

ω0 = 0.249 · 2π ω0 = 0.251 · 2π ω0 = 0.255 · 2π
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The starting point: MTE

 

Split beam
structure along
the ring

Example of a
measured beam
profile of a split
beam
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Extending MTE: an external exciter

(
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= R(ω0)
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n + εx `−1

n cos(ωt)

)
ω0 fixed, ω ≈ mω0: m islands.
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Extending MTE: an external exciter

• Trapping explained via time variation of islands’
surface for maps and Hamiltonians

• Scaling laws, parameter dependence established

• Possibility of beam splitting without varying tune
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Sharing transverse emittances
4D Hénon-like map(

x ′

p′x
y ′

p′y

)
= R(ωx , ωy)

(
x
px + Re f (x , y)
y
py − Im f (x , y)

)
• Resonance: δ = m ωx − n ωy ≈ 0
• 2D Hamiltonian, I2 = mJx + nJy approximately

conserved
• Vary ωx , ωy → separatrix crossing
• For each particle, can we make
Jy ,f = (m/n)Jx ,i =⇒ εx ,f = (m/n)εy ,i?
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Sharing transverse emittances
m = 1, n = 2 :
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Sharing transverse emittances

• Studied 2D Hamiltonian and 4D map models,
exchange mechanism explained via separatrix
crossing theory

• Resonances higher than 3: presence of additional
fixed points → more phase-space regions

• Improved adiabatic theory: error on final J
depends on adiabaticity

• Resonance (1, 2) and higher: power-law
• Resonance (1, 1) (coupling resonance): exponential
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Sharing transverse emittances: linear
coupling

• Exponential behaviour of
coupling exchange already
observed: now explained with
adiabatic theory

• Relationship between coupling
strength and adiabaticity
established
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Cooling an annular beam
• AC dipole & nonlinearity:
H = ω0J + Ω2J2/2 +
ε
√

2J cosφ cosωt

• vary ω, ε; engineer areas to
optimize trapping & transport:
up to 90% cooling
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Cooling an annular beam
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An alternative cooling
protocol has been devised
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Next steps

• Design experimental configurations to perform
beam tests of some of these techniques (mainly
on PS).

• Study the double-resonance case, like in the
MTE case, in which the resonance crossing is
improved by means of an AC dipole.
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