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Abstract

The Japan Atomic Energy Agency (JAEA) is working in the research and development of an Accelerator
Driven Subcritical System (ADS) for the transmutation of nuclear waste. To this end, JAEA is designing a
30-MW cw proton linear accelerator (linac) with a beam current of 20 mA. The JAEA-ADS linac starts
with a Normal Conducting (NC) up to an energy of 2.5 MeV. Then, five Superconducting (SC) sections
accelerate the beam up to 1.5 GeV. The biggest challenge for this ADS linac is the stringent reliability
required to avoid thermal stress in the subcritical reactor, which is higher than the achieved in present
accelerators. For this purpose, the linac pursues a strong-stable design that ensures the operation with
low beam loss and fault-tolerance capabilities to continue operating in case of failure. This work
presents the beam dynamics results toward achieving high reliability for the JAEA-ADS linac.
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Introduction

Japan Atomic Energy Agency (JAEA) is developing an Accelerator Driven Subcritical System
(ADS) for the transmutation of nuclear waste.

30 MW proton accelerator
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Beam tran§port line Table 1: Main characteristics of the JAEA-ADS accelerator.
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Fig.1: General scheme for the ADS [1].

The main challenge of an ADS accelerator is the severe restriction in the allowable beam
trips and their duration. To this end, a reliability-oriented design is pursued.

[1] K. Tsujimoto et al., “Neutronics design for lead bismuth cooled accelerator-driven system for transmutation of minor actinide”, JNST, vol. 41, no. 21, p. 21,
Jan. 2004.

[2] H. Takei, et al., "Estimation of acceptable beam-trip frequencies of accelerators for accelerator- driven systems and comparison with existing performance
data”, J. Nucl. Sci. Techol., vol. 49, p. 384, Sep. 2012.
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Reliability-oriented design

A reliability-oriented design is based on the strategy presented by the European ADS
project (MYRRHA)[1].

(" Robust lattice design: )
e Control of the beam loss.

e Simple design.

\ * Derating components operation. /

e ™\

Fault-tolerance: (Repairability: A
e Serial and parallel redundancy. M * Online and manual tunning.
\* Maintenance. )

[1] J.L. Biarrotte, Reliability and fault-tolerance in the European ADS project, CERN Yellow Report CERN-2013-001, pp.481-494 .
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JAEA-ADS linac desi
A strong optics design has been developed Normal conducting  Superconducting (Main Linac) |
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Fig. 2: Layout of the JAEA-ADS.

The optics performance was evaluated for the Ideal Machine (IM) and errors cases (Static
Element Errors (SEE), Dynamic Element Errors (DEE), and Input Beam Errors (IBE)).
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Fig. 3: Maximum radial envelopes for different beam cases.
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Fault-tolerance

SPARC

The ability to operate the accelerator with an acceptable beam performance in the presence
of undesired behavior of machine components, the so-called Fault-tolerance[1].

This study investigated serial redundancy.
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Fig. 6: Serial redundancy scheme.

The two schemes were implemented to achieve:
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" AE,..= 20% (for stopping) and 50% (for continue)

[1] J. L. Biarrote et al, “Beam Dynamics Studies for the Fault Tolerance Assessment of the PDS-XADS Linac Design”, in Proc. 9th European Particle Accelerator

Conf. (EPAC’04), Lucerne, Switzerland, Jul. 2004.
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Serial redundancies results
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Conclusions s

* The multiparticle tracking studies showed:
* Beam losses of 20 mW/m in error cases.
* Proper control of the beam envelopes and emittance
growth.
* The fault-tolerance analysis:
* Serial redundancy could be applied from the spoke section
to the end of the linac.
* Acceptable beam output properties.
* Without compromise the cavity operation.
* Neither a significant increase of the RF power budget.
* The results represent a step towards achieving a reliability-
oriented linac for the JAEA-ADS project.
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