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Abstract
Indirect space charge contributes significantly to the

impedance of non-ultrarelativistic machines such as the
LEIR, PSB and PS at CERN. While general expressions exist
in frequency domain for the beam coupling impedance, the
time domain wake function is typically obtained numerically,
thanks to an inverse Fourier transform. An analytical expres-
sion for the indirect space charge wake function, including
the time dependence as a function of particle velocity, is
nevertheless highly desirable to improve the accuracy of
time domain beam dynamics simulations of coherent insta-
bilities. In this work, a general formula for the indirect space
charge wake function is derived from the residue theorem.
Moreover, simple approximated expressions reproducing
the time and velocity dependence are also provided, which
can even be corrected to recover an exact formula, thanks
to a numerical factor computed once for all. The expres-
sions obtained are successfully benchmarked with a purely
numerical approach based on the Fourier transform.

INTRODUCTION
In high intensity synchrotrons, electromagnetic fields cre-

ated by the beam passage through its interaction with its
surroundings, is one of the main collective effect that can
limit the performance of the machine, potentially leading
to detrimental consequences such as heat load, emittance
growth or, in the most dramatic cases, beam instabilities. Its
role was pointed out as early as in 1965 in the seminal work of
Laslett et al [1], and the concept of beam coupling impedance
introduced slightly later by Sessler and Vaccaro [2]. The
impedance, defined as the Fourier transform of the integrated
force, felt by a witness (trailing) charge as a consequence of
the interaction of a source (leading) charge with a certain ac-
celerator equipment, normalised to the excitation, proved to
be a very useful descriptor of the magnitude of such effects
in a given machine. In particular, it can be efficiently used in
Vlasov equation solvers to compute and predict instabilities.

Over the past fifty years many analytical formulas have
been derived to provide such impedances, in particular in
the case of a smooth, axisymmetric structure such as a vac-
uum pipe, made of one or several layers of materials in the
radial direction [3–15]. On the other hand, the equivalent
time domain quantity, namely the wake function [16]1, re-
mains elusive, at least in the form of analytic formulas: for
∗ nicolas.mounet@cern.ch
1 The wake function should not to be confused with the so-called wake

potential that represents the convolution of the wake function by the

cylindrical resistive geometries one can mention the famous
thick-wall formula [5], its extension to non-ultrarelativistic
beams [17], as well as a thin-wall formula [18].

As a matter of fact, even the simplest case of a perfectly
conductive, cylindrical beam pipe, often called the indirect
space charge (ISC) impedance, although well-known in fre-
quency domain [8] still lacks a formula for its wake function—
one can mention the ultrarelativistic expression by Chao [5],
which is of limited practical interest as it is expressed as
a Dirac delta function in the longitudinal coordinate along
the bunch 𝑧. A more general wake function formula would
nevertheless be useful when performing macroparticle sim-
ulations. In particular, in low-energy machines, the ISC
is strong and its broad-band nature makes it very peaked
close to 𝑧 = 0 (the position of the source particle creating
the wake), which in turn requires a very fine discretization
along 𝑧, leading to time-consuming simulations. A simple
analytical formula would therefore be highly beneficial to
macroparticle simulations.

The ISC impedance is traditionally separated from the
direct space charge (i.e. the impedance in free space), the
latter being fundamentally of non-linear nature. In an ax-
isymmetric structure, the longitudinal and transverse dipolar
ISC impedances can be expressed respectively as [8]:

𝑍 ∥ (𝜔) =
𝑖𝜔𝜇0𝐿

2𝜋𝛽2𝛾2

𝐾0

(
𝑘𝑏
𝛾

)
𝐼0

(
𝑘𝑏
𝛾

) , 𝑍𝑑𝑖𝑝⊥ (𝜔) = 𝑖𝑘2𝑍0𝐿

4𝜋𝛽𝛾4

𝐾1

(
𝑘𝑏
𝛾

)
𝐼1

(
𝑘𝑏
𝛾

) ,
(1)

with 𝑖 the imaginary unit, 𝑏 the radius of the pipe, 𝐿 its length,
𝜔 > 0 the angular frequency (in rad/s), 𝜇0 the vacuum
permeability, 𝑍0 = 𝜇0𝑐 the free space impedance, 𝑐 the
speed of light in vacuum, 𝑣 = 𝛽𝑐 the beam velocity, 𝛾 the
relativistic mass factor, 𝑘 ≡ 𝜔/𝑣 the wave number, and 𝐼0,
𝐼1, 𝐾0 and 𝐾1 modified Bessel functions of the first and
second kinds. Note that SI units are used throughout these
proceedings.

In the following sections we will provide expressions for
the ISC wake functions, defined as Fourier integrals:

𝑊∥ (𝑧) =
1

2𝜋

∫ ∞

−∞
d𝜔𝑒𝑖𝜔

𝑧
𝑣 𝑍 ∥ (𝜔), (2)

𝑊𝑑𝑖𝑝
⊥ (𝑧) = − 𝑖

2𝜋

∫ +∞

−∞
𝑑𝜔𝑒𝑖𝜔

𝑧
𝑣 𝑍𝑑𝑖𝑝⊥ (𝜔). (3)

longitudinal bunch distribution. In early works (and in particular in
Ref. [16]), the wake function was actually often called "wake potential".
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We will provide first an exact formalism to compute the
ISC wake functions in the longitudinal and transverse planes.
Then, a numerical method will be briefly described and
used to benchmark the obtained formulas. This will be
followed by the description of a simplified approach in the
transverse case, providing a more handy formula that can
even be corrected to recover exact results. Finally, we will
give our concluding remarks.

EXACT ANALYTICAL APPROACH
In this section we first outline the formalism used to com-

pute Fourier integrals, before applying it to the specific case
of the ISC.

Computation of Fourier Integrals With the Residue
Theorem

Given a function 𝑓 (𝜔) defined in the complex plane, its
Fourier integral at a time 𝜏 > 0 can be expressed as∫ ∞

−∞
𝑒𝑖𝜔𝜏 𝑓 (𝜔)d𝜔 = lim

𝑅→∞

∫ 𝑅

−𝑅
𝑒𝑖𝜔𝜏 𝑓 (𝜔)d𝜔

= lim
𝑅→∞

(∮
𝐶1+𝐶2

𝑒𝑖𝜔𝜏 𝑓 (𝜔)d𝜔

−
∫
𝐶2

𝑒𝑖𝜔𝜏 𝑓 (𝜔)d𝜔
)
, (4)

with 𝐶1 the path along the real axis going from −𝑅 to 𝑅, and
𝐶2 the counter-clockwise half-circle from 𝑅 to −𝑅, in the
positive imaginary part of the complex plane, as illustrated
in Fig. 1. By virtue of Jordan’s lemma, the second integral
vanishes when 𝑅 goes to infinity, as long as the maximum
of 𝑓 on the half-circle 𝐶2 goes to zero at the limit in 𝑅, in
other words when

lim
𝑅→∞

[
max

0≤𝜃≤𝜋
𝑓
(
𝑅𝑒𝑖 𝜃

)]
= 0. (5)

In Eq. (4), the integral on the closed contour 𝐶1 +𝐶2 can be

−𝑅 𝐶1 𝑅 ℜ(𝜔)

ℑ(𝜔)

𝐶2

Figure 1: Sketch of the integration path in the complex plane.
Arrows indicate the direction of integration.

expressed using Cauchy’s residue theorem when 𝑓 is mero-
morphic on the upper complex half plane (i.e. holomorphic

except for a set of isolated points). Assuming also that all
the singularities of 𝑓 are simple poles, we get∫ ∞

−∞
𝑒𝑖𝜔𝜏 𝑓 (𝜔)d𝜔 = 2𝜋𝑖

∑︁
𝑘

𝑒𝑖𝜔𝑘 𝜏Res [ 𝑓 , 𝜔𝑘] , (6)

where Res [ 𝑓 , 𝜔𝑘] is the value of the residue of 𝑓 at the pole
𝜔𝑘 , and the sum runs over all poles in the upper half-plane.

Note that when 𝜏 < 0, the same reasoning can be per-
formed using instead a half-circle contour lying in the lower
half-plane of C, but since the direction of integration of
𝐶1 + 𝐶2 becomes clockwise, a minus sign appears in front
of the residue sum in Eq. (6).

Case of the ISC
The longitudinal and transverse ISC impedances are de-

fined by Eq. (1) for 𝜔 ≥ 0. For 𝜔 < 0, the impedances
are obtained from the following symmetry relations (which
ensure that the wake functions remain real quantities)

𝑍 ∥ (𝜔) = 𝑍 ∥ (−𝜔)∗, 𝑍𝑑𝑖𝑝⊥ (𝜔) = −𝑍𝑑𝑖𝑝⊥ (−𝜔)∗, (7)

where 𝑍∗ indicates the complex conjugate of 𝑍 .
These relations do not give the same results as Eq. (1),

had the latter be applied to a negative 𝜔, because these ex-
pressions do not obey to the same symmetry relations. In
particular, in the left half-plane the modified Bessel func-
tions 𝐾𝑚 (𝑚 = 0 or 1) are obtained from their values on
the right half-plane by analytic continuation [19], and a
branch cut appears, which has to remain out of the integra-
tion contour—we choose it along the negative imaginary
semi-axis when 𝑧 > 0 and the positive one for 𝑧 < 0. From
these considerations we can write, for ℜ(𝑥) < 0:

𝐾0 (𝑥) = 𝐾0 (−𝑥) − sgn(𝑧)𝑖𝜋𝐼0 (−𝑥), 𝐼0 (𝑥) = 𝐼0 (−𝑥),
𝐾1 (𝑥) = −𝐾1 (−𝑥) − sgn(𝑧)𝑖𝜋𝐼1 (−𝑥), 𝐼1 (𝑥) = −𝐼1 (−𝑥),

(8)
where sgn(z) denotes the sign of z. Therefore, for 𝜔 < 0
the longitudinal and transverse ISC can be expressed respec-
tively as

𝑍 ∥ (𝜔) = 𝑖𝐴𝜔
𝐾0

(
𝑘𝑏
𝛾

)
𝐼0

(
𝑘𝑏
𝛾

) − sgn(𝑧)𝜋𝐴𝜔, (9)

𝑍𝑑𝑖𝑝⊥ (𝜔) = 𝑖𝐵𝜔2
𝐾1

(
𝑘𝑏
𝛾

)
𝐼1

(
𝑘𝑏
𝛾

) + sgn(𝑧)𝜋𝐵𝜔2, (10)

with 𝐴 ≡ 𝜇0𝐿
2𝜋𝛽2𝛾2 and 𝐵 ≡ 𝑍0𝐿

4𝜋𝛽3𝑐2𝛾4 . Hence, for the longi-
tudinal wake function we get, with the additional term of
Eq. (9):

𝑊∥ (𝑧) =
𝑖𝐴

2𝜋

∫ ∞

−∞
d𝜔𝑒𝑖𝜔

𝑧
𝑣𝜔

𝐾0

(
𝑘𝑏
𝛾

)
𝐼0

(
𝑘𝑏
𝛾

)
− sgn(𝑧)𝐴

2

∫ 0

−∞
d𝜔𝑒𝑖𝜔

𝑧
𝑣𝜔.
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The function 𝑓 defined by 𝑓 (𝜔) = 𝜔𝐾0

(
𝑘𝑏
𝛾

)
𝐼0

(
𝑘𝑏
𝛾

) fulfils Jordan’s

condition from Eq. (5) in the upper-right quadrant (from
the asymptotic expansion of the Bessel functions [19]), but
not in the upper-left quadrant. Using again Eq. (8), the
corresponding first term of 𝑓 does fulfil Jordan’s condition
but not the term proportional to 𝜔, leading to an integral
over a quarter circle along 𝐶2 which remains non-zero. The
latter can be combined with the semi-infinite integral above:

lim
𝑅→∞

(∫ −𝑅

sgn(𝑧)𝑖𝑅
d𝜔𝑒𝑖𝜔

𝑧
𝑣𝜔

)
+
∫ 0

−∞
d𝜔𝑒𝑖𝜔

𝑧
𝑣𝜔

=

∫ 0

sgn(𝑧)𝑖∞
d𝜔𝑒𝑖𝜔

𝑧
𝑣𝜔 =

𝑣2

𝑧2
,

applying the residue theorem to the function 𝜔 → 𝜔𝑒𝑖𝜔
𝑧
𝑣

which exhibits no pole. Using then Eq. (6) we finally obtain

𝑊∥ (𝑧) = −𝐴sgn(𝑧)
∑︁
𝑘

𝑒𝑖𝜔𝑘
𝑧
𝑣 Res [ 𝑓 , 𝜔𝑘] − sgn(𝑧)𝐴𝑣2

2𝑧2
.

(11)
The function 𝑓 is meromorphic except for the branch cut of
𝐾0, which touches the contour of integration only at 𝜔 = 0,
but can be bypassed by modifying slightly the contour around
the origin thanks to a half-circle of vanishing radius. The
corresponding contribution to the integral vanishes as well,
as 𝜔 = 0 is not a singularity of 𝑓 , which can be readily seen
by noticing that [19] 𝑓 (𝜔) ∼ −𝜔 ln(𝜔) −→𝜔→0 0.

The poles of 𝑓 are given by the zeros of 𝐼0, which are all
simple [19] and correspond to the real zeros 𝑗0,𝑘 > 0 of 𝐽0
(Bessel function of the first kind) through

𝜔𝑘 =
𝑖 𝑗0,𝑘𝛾𝑣

𝑏
for 𝑧 > 0 (poles in upper half-plane),

𝜔𝑘 =
−𝑖 𝑗0,𝑘𝛾𝑣

𝑏
for 𝑧 < 0 (poles in lower half-plane),

(12)
from 𝐼0 (𝑥) = 𝐽0 (𝑖𝑥). Since the poles are simple, the residue
at 𝜔𝑘 can be obtained from L’Hôpital’s rule:

Res[ 𝑓 , 𝜔𝑘] =
sgn(𝑧)𝑖 𝑗0,𝑘𝛾𝑣

𝑏

𝐾0
(
sgn(𝑧)𝑖 𝑗0,𝑘

)
𝑏
𝛾𝑣
𝐼 ′0

(
sgn(𝑧)𝑖 𝑗0,𝑘

)
=
𝑗0,𝑘𝛾

2𝑣2

𝑏2
𝐾0

(
sgn(𝑧)𝑖 𝑗0,𝑘

)
𝐽1

(
𝑗0,𝑘

) , (13)

where we have used that 𝐼 ′0 (±𝑖𝑥) = 𝐼1 (±𝑖𝑥) = ±𝑖𝐽1 (𝑥) [19].
Combining Eqs. (11), (12) and (13) we get the total longitu-
dinal wake:

𝑊∥ (𝑧) = − sgn(𝑧)𝐿
4𝜋𝜀0𝛾2

1
𝑧2

− sgn(𝑧)𝐿
2𝜋𝜀0𝑏2

∞∑︁
𝑘=1

𝑒−
𝑗0,𝑘 𝛾 |𝑧 |

𝑏
𝑗0,𝑘𝐾0

(
sgn(𝑧)𝑖 𝑗0,𝑘

)
𝐽1

(
𝑗0,𝑘

) . (14)

with 𝜀0 ≡ 1
𝜇0𝑐2 the vacuum permittivity.

In transverse, a very similar reasoning (in particular re-
garding the additional integral from the partly unfulfilled
Jordan’s condition) gives

𝑊𝑑𝑖𝑝
⊥ (𝑧) = 𝑖𝐵

∑︁
𝑘

𝑒𝑖𝜔𝑘
𝑧
𝑣 Res [𝑔, 𝜔𝑘] + sgn(𝑧)𝐵𝑣3

𝑧3
, (15)

with 𝑔 the function defined by 𝑔(𝜔) = 𝜔2 𝐾1

(
𝑘𝑏
𝛾

)
𝐼1

(
𝑘𝑏
𝛾

) . As 𝑓

defined above, 𝑔 does not have a singularity in 0 but a well-
defined limit 2𝑣2𝛾2

𝑏2 , and exhibits a set of simple poles ob-
tained from the zeros 𝑗1,𝑘 > 0 of 𝐽1 (using the relation
𝐼1 (𝑥) = −𝑖𝐽1 (𝑖𝑥)):

𝜔𝑘 =
𝑖sgn(𝑧) 𝑗1,𝑘𝛾𝑣

𝑏
. (16)

The residue sum is then obtained again from L’Hôpital’s
rule, and the total transverse wake reads

𝑊𝑑𝑖𝑝
⊥ (𝑧) = sgn(𝑧)𝐿

4𝜋𝜀0𝛾4
1
𝑧3

− 𝑖sgn(𝑧)𝐿
2𝜋𝜀0𝛾𝑏3

∞∑︁
𝑘=1

𝑒−
𝑗1,𝑘 𝛾 |𝑧 |

𝑏

𝑗21,𝑘𝐾1
(
sgn(𝑧)𝑖 𝑗1,𝑘

)
𝐽0

(
𝑗1,𝑘

) − 𝐽2
(
𝑗1,𝑘

) , (17)

where we used 2𝐼 ′1 (±𝑖𝑥) = 𝐽0 (𝑥) − 𝐽2 (𝑥).

NUMERICAL BENCHMARK
To compute wake functions when analytical formulas can-

not be found, one typically resorts to a numerical integration,
using discrete, fast Fourier transforms. In the case of smooth,
slowly decaying beam coupling impedances, this can lead
to the need of a large number of points, difficult or even
impossible to handle [15], related to the number of decades
to be meshed with evenly-spaced frequencies.

Another approach is preferred here: we use an uneven
frequency sampling, combined with an exact integration of a
linear interpolation of the impedance, over each sub-interval.
The latter aspect was inspired by a method first found by
Filon in 1928 [20], and extended later in various works [21–
25]. The full method we use here is extensively described
in Ref. [15].

We consider a Fourier integral of the form

𝐼 (𝜏) =
∫ ∞

𝜔𝑚𝑖𝑛

d𝜔𝑒𝑖𝜔𝜏 𝑓 (𝜔). (18)

Wake functions given by Eqs. (2) or (3) can be easily cast into
this semi-infinite form (with 𝜔𝑚𝑖𝑛 = 0), using the symmetry
properties of the impedances given in Eq. (7).

We first set 𝜔𝑚𝑎𝑥 high enough for the 𝑓 function to be
small and decaying for 𝜔 > 𝜔𝑚𝑎𝑥 , and we cut the inter-
val [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥] into several sub-intervals, not necessarily
equidistant, delimited by the angular frequencies 𝜔 𝑗 with 𝑗
from 0 to 𝑁 (𝜔0 = 𝜔𝑚𝑖𝑛 and 𝜔𝑁 = 𝜔𝑚𝑎𝑥). Then

𝑓 (𝜔) ≈ 𝑝 𝑗 (𝜔) for 𝜔 𝑗 ≤ 𝜔 ≤ 𝜔 𝑗+1, (19)
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where 𝑝 𝑗 is the interpolating (linear) polynomial on the
interval [𝜔 𝑗 , 𝜔 𝑗+1]. The integral 𝐼 (𝜏) is then obtained from

𝐼 (𝜏) =
𝑁−1∑︁
𝑗=0

∫ 𝜔 𝑗+1

𝜔 𝑗

d𝜔𝑒𝑖𝜔𝜏 𝑓 (𝜔) +
∫ ∞

𝜔𝑚𝑎𝑥

d𝜔𝑒𝑖𝜔𝜏 𝑓 (𝜔).

(20)
The second integral is approximated by assuming that
𝑓 (𝜔) ≈ 𝑓 (𝜔𝑚𝑎𝑥) for 𝜔 > 𝜔𝑚𝑎𝑥 , while the first one is
computed using Filon’s method on each sub-interval:

𝐼 (𝜏) ≈
𝑁−1∑︁
𝑗=0

∫ 𝜔 𝑗+1

𝜔 𝑗

d𝜔𝑒𝑖𝜔𝜏 𝑝 𝑗 (𝜔) + 𝑒𝑖𝜔𝑚𝑎𝑥 𝜏
𝑖 𝑓 (𝜔𝑚𝑎𝑥)

𝜏

≈
𝑁−1∑︁
𝑗=0

Δ 𝑗
[
𝑓 (𝜔 𝑗 )𝑒𝑖𝜔 𝑗+1𝜏Λ

(−Δ 𝑗𝜏)
+ 𝑓 (𝜔 𝑗+1)𝑒𝑖𝜔 𝑗 𝜏Λ

(
Δ 𝑗𝜏

) ] + 𝑒𝑖𝜔𝑚𝑎𝑥 𝜏
𝑖 𝑓 (𝜔𝑚𝑎𝑥)

𝜏
, (21)

with Δ 𝑗 ≡ 𝜔 𝑗+1 − 𝜔 𝑗 and Λ defined by

Λ(𝑥) = − 𝑖𝑒
𝑖𝑥

𝑥
+ 𝑒

𝑖𝑥 − 1
𝑥2 . (22)

Note that the Taylor expansion of Λ is often useful to com-
pute values for small arguments:

Λ(𝑥) =
∞∑︁
𝑛=0

1
𝑛 + 2

(𝑖𝑥)𝑛
𝑛!

. (23)

Extensions of the method with cubic interpolation, or
using a higher order Taylor expansion of 𝑓 for𝜔 > 𝜔𝑚𝑎𝑥 , are
described in Ref. [15]. An automatic refinement procedure
to achieve convergence vs. frequency sampling, was also
implemented and used for various kinds of impedances.

The numerical approach just outlined is compared to the
exact formulas derived above in Figs. 2 and 3, which reveals
the excellent agreement between the two methods.

Figure 2: Comparison between the exact transverse ISC
wake function from Eq. (17) (solid blue line) and the numer-
ical approach (red crosses) (𝐿 = 1 m, 𝑏 = 0.08 m, 𝛾 = 1.05).

Figure 3: Comparison between the exact longitudinal ISC
wake function from Eq. (14) (solid blue line) and the numeri-
cal approach (red crosses) (𝐿 = 1 m, 𝑏 = 0.08 m, 𝛾 = 1.05).

SIMPLIFIED EXPRESSION FOR THE
TRANSVERSE WAKE

In this section an approximated formula for the transverse
ISC is presented. We will then recover the exact result with
a simple correction scheme.

Approximate Formula
To approximate the transverse ISC impedance given in

Eq. (1), one could use the approximation for small arguments
of both modified Bessel function, namely 𝐾1 (𝑥) ≈ 1/𝑥
and 𝐼1 (𝑥) ≈ 𝑥/2 [19]. This would lead to an expression
without dependency on frequency, which would be useless
to compute the ISC wake function. A useful expression can
rather be obtained using solely the approximation for a small
argument of the modified Bessel function 𝐼1. In this case
the transverse impedance can be rewritten as follows:

𝑍𝑑𝑖𝑝⊥ (𝜔) ≈
𝑖𝑘𝑍0𝐿 𝐾1

(
𝑘𝑏
𝛾

)
2𝜋𝑏𝛽𝛾3 . (24)

The Fourier transform of Eq. (24) can be performed analyt-
ically, which gives a useful approximation of the transverse
ISC wake function:

𝑊𝑑𝑖𝑝
⊥ (𝑧) ≈ 𝑍0𝐿

4𝜋𝛽𝛾4
(
𝑧2 + 𝑏2

𝛾2

)3/2 . (25)

In Fig. 4, a comparison is performed between the approx-
imated wake function and the exact analytical formula from
the previous section, showing that the approximated formula
describes, with a reasonable degree of accuracy, the depen-
dency of the transverse wake function with the relativistic
factor.

Note that an improved formula can be obtained by com-
bining the approximation for a small argument of the mod-
ified Bessel function 𝐼1 with the approximation 𝐼1 (𝑥) ≈

1
2𝐾1 (𝑥) [26].
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Figure 4: Comparison between the approximated wake func-
tion formula from Eq. (25) (dashed lines) and the exact
one from Eq. (17) (full lines), for a chamber with radius
𝑏 = 0.03 m and length 𝐿 = 1 m, for various values of the
relativistic factor 𝛽.

Correcting Factor
The ratio between the exact and the approximated formu-

las (which we will call hereafter the "discrepancy function")
turns out to depend only on 𝜏𝑎 with 𝑎 = 𝑏/(𝑣𝛾) and 𝜏 = 𝑧/𝑣.
A graphical representation of this function for two different
values of 𝑎 is displayed in Fig. 5.

Figure 5: Discrepancy function between the exact and ap-
proximated formulas (Eqs. (17) and (25) respectively), for
two different values of 𝑎 = 𝑏/(𝑣𝛾).

Using this peculiarity we can obtain an exact formula for
the ISC wake function, which will require the computation
of a single reference discrepancy function. The generalized,
corrected formula using the discrepancy function can be
written as follows:

𝑊𝑑𝑖𝑝
⊥ (𝜏) = 𝐹 (𝜏𝑛) 𝑍0𝐿

2𝜋𝑐2𝛽3𝛾4 (𝜏2 + 𝑎2)3/2 , (26)

where 𝐹 (𝜏𝑛) is the discrepancy function with 𝜏𝑛 = 𝜏𝑎𝑟𝑒 𝑓 /𝑎
and 𝑎𝑟𝑒 𝑓 = 𝑏𝑟𝑒 𝑓 /(𝑐𝛽𝑟𝑒 𝑓 𝛾𝑟𝑒 𝑓 ). Therefore, computing once
for all 𝐹 (𝜏𝑛), it is possible to scale appropriately𝑊𝑑𝑖𝑝

⊥ for
any value of 𝑎. The equation has been successfully bench-
marked with the exact approach for various values of the
relativistic factor 𝛽 (see Fig. 6).

Figure 6: Comparison between the corrected wake function
formula from Eq. (26) (dashed lines) and the exact one from
Eq. (17) (full lines) for various values of the relativistic factor
𝛽.

CONCLUSION
General formulas for the indirect longitudinal and trans-

verse space charge wake functions have been obtained from
an exact analytical approach. Moreover, a simpler expres-
sion reproducing the time and velocity dependence has been
found for the transverse wake, and can even be corrected
to recover an exact formula, thanks to a numerical function
that can be calculated once for all. The expressions obtained
have been successfully benchmarked with a purely numeri-
cal approach based on an uneven frequency sampling and a
Filon-like method to compute the Fourier integral.
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