Author: Zhao, Q.
Paper Title Page
WEDC3 Status of FRIB Commissioning 203
 
  • P.N. Ostroumov, F. Casagrande, K. Fukushima, M. Ikegami, T. Kanemura, S.H. Kim, S.M. Lidia, G. Machicoane, T. Maruta, D.G. Morris, A.S. Plastun, J.T. Popielarski, J. Wei, T. Xu, T. Zhang, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
The Facility for Rare Isotope Beams (FRIB), a major nuclear physics facility for research with fast, stopped, and reaccelerated rare isotope beams, is approaching the commencement of user operation in 2022 as planned. The readiness of the linear accelerator for the production of rare isotopes was verified by the acceleration of Xenon-124 and Krypton-86 heavy ion beams to 212 MeV/u using all 46 cryomodules with 324 superconducting cavities. Several key technologies were successfully developed and implemented for the world’s highest energy continuous wave heavy ion beams, such as full-scale cryogenics and superconducting radiofrequency resonator system, stripping heavy ions with a thin liquid lithium film flowing in an ultrahigh vacuum environment, and simultaneous acceleration of multiple-charge-state-heavy ion beams. These technologies are required to achieve ultimate FRIB beam energies beyond 200 MeV/u and beam power up to 400 kW. High intensity pulsed beams capable in delivering 200 kW beams to the target in CW mode were studied in the first segment of the linac.
 
slides icon Slides WEDC3 [2.437 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2021-WEDC3  
About • Received ※ 16 October 2021 — Revised ※ 20 October 2021 — Accepted ※ 22 November 2021 — Issue date ※ 24 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)