JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.

RIS citation export for TUAC1: Self-Consistent Long-Term Dynamics of Space Charge Driven Resonances in 2D and 3D

AU  - Oeftiger, A.
AU  - Boine-Frankenheim, O.
AU  - Hofmann, I.
ED  - Gianfelice, Eliana
ED  - Nagaitsev, Sergei
ED  - Kim, Dong Eon
ED  - Marx, Michaela
ED  - Schaa, Volker R. W.
TI  - Self-Consistent Long-Term Dynamics of Space Charge Driven Resonances in 2D and 3D
J2  - Proc. of HB2021, Batavia, IL, USA, 04-08 October 2021
CY  - Batavia, IL, USA
T2  - ICFA ABDW on High-Intensity and High-Brightness Hadron Beams
T3  - 64
LA  - english
AB  - Understanding the 3D collective long-term response of beams exposed to resonances is of theoretical interest and essential for advancing high intensity synchrotrons. This study of a hitherto unexplored beam dynamical regime is based on 2D and 3D self-consistent particle-in-cell simulations and on careful analysis using tune spectra and phase space. It shows that in Gaussian-like beams Landau damping suppresses all coherent parametric resonances, which are of higher than second order (the "envelope instability"). Our 3D results are obtained in an exemplary stopband, which includes the second order coherent parametric resonance and a fourth order structural resonance. They show that slow synchrotron oscillation plays a significant role. Moreover, for the early time evolution of emittance growth the interplay of incoherent and coherent resonance response matters, and differentiation between halo and different core regions is essential. In the long-term behavior we identify a progressive, self-consistent drift of particles toward and across the resonance, which results in effective compression of the initial tune spectrum. However, no visible imprint of the coherent features is left over, which only control the picture during the first one or two synchrotron periods. An intensity limit criterion and an asymptotic formula for long-term rms emittance growth are suggested. Comparison with the commonly used non-self-consistent "frozen space charge" model shows that in 3D this approximation yields a fast and useful orientation, but it is a conservative estimate of the tolerable intensity.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 160
EP  - 169
KW  - resonance
KW  - space-charge
KW  - emittance
KW  - simulation
KW  - synchrotron
DA  - 2022/04
PY  - 2022
SN  - 2673-5571
SN  - 978-3-95450-225-7
DO  - doi:10.18429/JACoW-HB2021-TUAC1
UR  - https://jacow.org/hb2021/papers/tuac1.pdf
ER  -