JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for MOP23: Coupled Bunch Instabilities Growth in the Fermilab Booster During Acceleration Cycle

@inproceedings{bhat:hb2021-mop23,
  author       = {C.M. Bhat and N. Eddy},
  title        = {{Coupled Bunch Instabilities Growth in the Fermilab Booster During Acceleration Cycle}},
% booktitle    = {Proc. HB'21},
  booktitle    = {Proc. 64th Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams (HB'21)},
  eventdate    = {2021-10-04/2021-10-08},
  pages        = {140--145},
  paper        = {MOP23},
  language     = {english},
  keywords     = {booster, extraction, emittance, injection, acceleration},
  venue        = {Batavia, IL, USA},
  series       = {ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams},
  number       = {64},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {03},
  year         = {2024},
  issn         = {2673-5571},
  isbn         = {978-3-95450-225-7},
  doi          = {10.18429/JACoW-HB2021-MOP23},
  url          = {https://jacow.org/hb2021/papers/mop23.pdf},
  abstract     = {{The Fermilab Booster is an RCS with h=84 and gammaT =5.47 and, during standard operation it accelerates ~4.5E12ppBc from 400 MeV to 8 GeV at 15 Hz. The Booster is being upgraded to handle higher beam intensity >6.7E12ppBc and repetition rate of 20Hz. In the current mode of operation, we perform multi-turn beam injection and capture beam in h=84 system adiabatically. However, we have observed coupled bunch (CB) instabilities in the extracted beam. This issue is expected to worsen at higher beam intensities. In principle, for h=84 one expects 41 modes of oscillations contributing to these CB instabilities. Currently, we have a digital mode damper to mitigate prominent CB modes. We would like to understand at what time in the beam cycle a particular mode is going to originate and how much it contributes at a different time of the cycle. In this regard, we have collected wall current monitor data from injection to extraction and looked for the start of a particular mode of CB instability and its growth for different intensities. This paper presents the results from this study and future plans to mitigate the CB instability in Booster.}},
}