

# HIAF front end for transmission and acceleration of 30 pµA $^{238}\text{U}^{35+}$

### Y. Yang

L. T. Sun, H. W. Zhao, L. Lu, Y. He, W. P. Dou, H. Jia, Z. Shen, C. Qian, W. Ma, X. Fang, L. Jing, Y. Wei, Y. J. Yuan, L. P. Sun, W. Lu, S. H. Liu, Y. H. Guo

IMP/CAS, Lanzhou, China

20 June, 2018 Daejeon, Korea





#### • Overview

#### • HIAF Front End: Design and studies

- High intensity heavy ion beam production and beam quality
- Beam transport and space charge issues
- High intensity beam matching with RFQ
- End-to-End simulation
- Beam commissioning of LEAF
- Summary



### **Overview**







#### **High intensity heavy ion Front End**



Typically Ar<sup>12+</sup> 1 emA/CW

Typically U<sup>33+</sup>+U<sup>34+</sup> 13 pµA /CW



## **HIAF Front end**





- □ High Intensity heavy ion beam production
- □ Intense heavy ion beam extraction
- Intense heavy ion beam transmission with high
  - quality and efficiency
    - Borrowed ideas: Achromatic beam optics,
      - Beam collimation, MHB...
- □ Intense heavy ion beam matching to RFQ
- □ High Intensity heavy ion beam RFQ

# High intensity heavy ion beam production



# High intensity heavy ion beam production





### **Beam extraction**



# ECR beam quality: emittance growth

 $\varepsilon_{mag} = 0.032 \cdot (R_{extr})^2 \cdot (\frac{B_{extr}}{M/O})$ 

- $\checkmark$  Triangular shape due to magnetic field of ion source.
- ✓ In-homogeneous density distribution in cross-section.
- $\checkmark$  Large projection emittance due to high magnetic field at extraction.



# ECR beam quality: Coupling





| $R_{out} = \begin{bmatrix} 1\\0\\0\\\kappa \end{bmatrix}$ | $ \begin{array}{ccc} 0 & 0 \\ 1 & -\kappa \\ 0 & 1 \\ 0 & 0 \end{array} $ | $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}  K =$                                     | $=\frac{B_{extr}}{2(B\rho)}$                                                           | <i>C</i> <sub>0</sub> =                                           | $ \begin{array}{c} \varepsilon\beta & 0\\ 0 & \frac{\varepsilon}{\beta}\\ 0 & 0\\ 0 & 0 \end{array} $          | 0<br>0<br>εβ<br>0 | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( |
|-----------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------|
| <i>C</i> <sub>1</sub> =                                   | $R_{out}C_0R_{out}^T$                                                     | $= \begin{bmatrix} \varepsilon \beta \\ 0 \\ 0 \\ \kappa \varepsilon \beta \end{bmatrix}$ | $0$ $\frac{\varepsilon}{\beta} + \kappa^2 \varepsilon \beta$ $-k\varepsilon \beta$ $0$ | $ \begin{array}{c} 0 \\ -\kappa \epsilon \beta \\ 0 \end{array} $ | $\frac{\kappa\varepsilon\beta}{0}$ $\frac{0}{\varepsilon}$ $\frac{\varepsilon}{\beta} + \kappa^{2}\varepsilon$ | β                 |                                                                                 |

$$\varepsilon_x = \varepsilon_y = \sqrt{\varepsilon\beta(\frac{\varepsilon}{\beta} + \kappa^2\varepsilon\beta)} \quad \varepsilon_{1,2} = \varepsilon_x \pm \kappa\varepsilon\beta$$

Factor ①: half-solenoid field induced rotational momentum dis-conservation .

Factor 2: magnetic field induced beam rotation along axis (non-round beam).

# ECR beam quality: Coupling



# Paired Solenoid: Avoiding coupling



# Space Charge effect: Q/A Separation



•Objective ion: U<sup>35+</sup>

- $U^{35+} \sim 2 \text{ emA}$ , Total current  $\sim 20 \text{ emA}$ .
- Initial mixed beam were simplified to include 20 different ion species
- Assuming all the beams have water-bag distributions with the same Twiss parameters, ~ 0.24  $\pi$ .mm.mrad.

# Space Charge effect: Q/A Separation

#### •SCC: Space Charge Compensation



Space charge compensation
 degree has a vital impact on beam
 transmission and charge separation.
 How much is the SCC factor?



### **MSU** measurement

The measurements suggest overall low neutralization factors (0%–60%).

#### **Retarding field analyzer**



Rev. Sci. Instrum. 85, 02A739 (2014)



#### Measurement with SECRAL-II ion source



Measurement with SECRAL ion source





 ✓ Beam emittance does NOT increase with beam intensity.

- → good compensation in ECR Q/A analyzer lines.
- ✓ Beam quality is mainly determined by the ion source tuning and plasma conditions.







In realistic beam simulations and Q/A analyzer design it is secure to set the overall space charge compensation factor to 70% for intense highly-charged ion beams.



### **Multi-particle tracking**

Phase space distribution after charge selection



# Necessity of beam collimation



Particle distribution at RFQ entrance



# **LEBT collimation channel**

 ✓ 3 successive apertures;
 ✓ Phase advance of about 45 degrees per drift space;
 ✓ Total phase advance of 90 degrees.





# **LEBT collimation channel**





### **LEBT collimator**

#### Phase space distribution at the 1<sup>st</sup> aperture





### **LEBT collimator**

#### Phase space distribution at the 2<sup>nd</sup> aperture



With 1<sup>st</sup> aperture cut



### **LEBT collimator**

#### Phase space distribution at the 3<sup>rd</sup> aperture



With 1<sup>st</sup> and 2<sup>nd</sup> aperture cut

# LEBT collimation channel

#### **20%** of the particle tails contribute more than 69% of emittance.



Particle distribution at RFQ entrance with Collimation cutting in LEBT



#### **Requirements and strategies:**

- □ High acceleration efficiency and high transmission.
- □ Small Longitudinal Emittance.
  - External 3-harmonic pre-buncher
  - Small longitudinal acceptance of RFQ
- □ Proper Vane Voltage to minimize the thermal problem for CW beam.
- □ Length as short as possible.
- □ Traditional design for easily fabricating and tuning— Sinusoidal modulation,

constant voltage, constant average radius.

□ Small convergence at entrance for easily matching with LEBT.

#### High intensity beam matching with RFQ: Longitudinal

#### **Beam pre-bunching with 3-Harmonic Buncher**



IMP

Voltage (kV) for three Harmonics:



#### With longitudinal space charge

| Longitudinal Space Charge | 1 <sup>st</sup> Harmonics<br>(40.625 MHz) | 2 <sup>nd</sup> Harmonics<br>(81.25 MHz) | 3 <sup>rd</sup> Harmonics<br>(121.875 MHz) |
|---------------------------|-------------------------------------------|------------------------------------------|--------------------------------------------|
| NO                        | 2.66                                      | -1.60                                    | 1.46                                       |
| YES                       | 3.19                                      | -2.26                                    | 2.03                                       |

Starting phase and modulation are selected as -60° and 1.02.

### High intensity beam matching with RFQ: Transverse

#### **Steep convergence VS Smooth convergence at RFQ entrance**

Beam back-tracking from the entrance of the RFQ electrode

RFQ electrode entrance

IMP





- (a) RFQ matching TWISS parameters: alpha~ 0.63, beta~5.92 cm/rad emittance growth: 4.6%
- (b) RFQ matching TWISS parameters: alpha~ 0.39, beta~12.06 cm/rad emittance growth:0.24%

#### High intensity beam matching with RFQ: Transverse

#### **Steep convergence VS Smooth convergence at RFQ entrance**

IMP





### **RFQ beam dynamics**

|                                                                                                                                                                                                                                                                    | HIAF-RFQ                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Design M/Q                                                                                                                                                                                                                                                         | 2~7                                                                                                              |
| Frequency (MHz)                                                                                                                                                                                                                                                    | 81.25                                                                                                            |
| Resonance cavity                                                                                                                                                                                                                                                   | 4-vane                                                                                                           |
| Input/Output energy (MeV/u)                                                                                                                                                                                                                                        | 0.014/0.5                                                                                                        |
| Max. vane voltage (kV)                                                                                                                                                                                                                                             | 70                                                                                                               |
| Max. Kilpatrick Coefficient                                                                                                                                                                                                                                        | 1.57                                                                                                             |
| R <sub>0</sub> (mm)                                                                                                                                                                                                                                                | 5.758                                                                                                            |
| Synchronous Phase                                                                                                                                                                                                                                                  | -60° ~-26°                                                                                                       |
| •                                                                                                                                                                                                                                                                  |                                                                                                                  |
| Modulation Factor                                                                                                                                                                                                                                                  | 1.02~2.03                                                                                                        |
| Modulation Factor<br>Acceptance TWISS α/β (cm/rad)                                                                                                                                                                                                                 | 1.02~2.03<br>0.39/12.05                                                                                          |
| Modulation Factor<br>Acceptance TWISS α/β (cm/rad)<br>Radial Matcher cell                                                                                                                                                                                          | 1.02~2.03<br>0.39/12.05<br>6                                                                                     |
| Modulation FactorAcceptance TWISS α/β (cm/rad)Radial Matcher cellLength (cm)                                                                                                                                                                                       | <b>1.02~2.03</b><br><b>0.39/12.05</b><br><b>6</b><br>623.9                                                       |
| Modulation FactorAcceptance TWISS α/β (cm/rad)Radial Matcher cellLength (cm)Overall acceleration efficiency                                                                                                                                                        | 1.02~2.03<br>0.39/12.05<br>6<br>623.9<br>81.3%                                                                   |
| Modulation FactorAcceptance TWISS $\alpha/\beta$ (cm/rad)Radial Matcher cellLength (cm)Overall acceleration efficiency $\varepsilon_{z,rms}$ (keV/u.ns)                                                                                                            | 1.02~2.03         0.39/12.05         6         623.9         81.3%         0.33                                  |
| Modulation FactorAcceptance TWISS $\alpha/\beta$ (cm/rad)Radial Matcher cellLength (cm)Overall acceleration efficiency $\varepsilon_{z,rms}$ (keV/u.ns) $\varepsilon_{z,99.9\%}$ (keV/u.ns)                                                                        | 1.02~2.03         0.39/12.05         6         623.9         81.3%         0.33         6.40                     |
| Modulation FactorModulation FactorAcceptance TWISS $\alpha/\beta$ (cm/rad)Radial Matcher cellLength (cm)Overall acceleration efficiency $\varepsilon_{z,rms}$ (keV/u.ns) $\varepsilon_{z,99.9\%}$ (keV/u.ns) $\varepsilon_{x,rms}/\varepsilon_{y,rms}$ (π.mm.mrad) | 1.02~2.03         0.39/12.05         6         623.9         81.3%         0.33         6.40         0.152/0.146 |



### **RFQ beam dynamics**

@ rfqgen



# End-End Simulation for HIAT FE

#### □ Initial particle distribution from extraction simulation.



# End-End Simulation for HIAT FE

#### □ Initial particle distribution from extraction simulation.





- Initial 2 emA U<sup>35+</sup>
- 80% transmission in LEBT with collimation cut
- Overall 81.25% acceleration efficiency in RFQ with MHB



# End-End Simulation for HIAT FE

#### Simulation with different SCC factor in LEBT

•SCC: Space Charge Compensation

| SCC | Collimator | η <sub>lebt</sub> | η <sub>rfQ</sub> | η <sub>Total</sub> | ε <sub>x lebt</sub> | ε <sub>y lebt</sub> | ε <sub>x RFQ</sub> | ε <sub>y RFQ</sub> | ε <sub>z RFQ</sub> |
|-----|------------|-------------------|------------------|--------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| 95% | withou     | 100%              | 68.8%            | 68.8%              | 0.23                | 0.21                | 0.16               | 0.15               | 0.34               |
|     | with       | 80%               | <b>79.9%</b>     | 63.8%              | 0.16                | 0.14                | 0.15               | 0.14               | 0.33               |
| 70% | without    | 100%              | 67.0%            | 67.0%              | 0.27                | 0.31                | 0.15               | 0.15               | 0.33               |
|     | with       | 80%               | 81.3%            | 65.0%              | 0.16                | 0.15                | 0.15               | 0.15               | 0.33               |
| 50% | without    | 100%              | 65.4%            | 65.4%              | 0.28                | 0.31                | 0.18               | 0.16               | 0.32               |
|     | with       | 80%               | 80.0%            | 64.0%              | 0.18                | 0.17                | 0.17               | 0.15               | 0.32               |
| 25% | without    | 100%              | 62.1%            | 62.1%              | 0.31                | 0.35                | 0.19               | 0.17               | 0.32               |
|     | with       | 80%               | 76.8%            | 61.4%              | 0.19                | 0.20                | 0.19               | 0.16               | 0.32               |
| 0%  | without    | 99.4%             | 60.3%            | 60.0%              | 1.02                | 0.92                | 0.18               | 0.19               | 0.30               |
|     | with       | 80%               | 74.6%            | 59.7%              | 0.22                | 0.21                | 0.18               | 0.18               | 0.30               |



LEAF (Low Energy Accelerator Facility)









### ECR beam

- <sup>4</sup>He<sup>1+</sup>
- Beam intensity: ~ 88.8 euA
- Pencil beam



LEBT test chamber 1#

#### **LEBT** beam transmission → Axisymmetric beam





### RFQ

#### Beam simulation @ TRACK @ without MHB

- Transmission efficiency ~ 99.2%
- Acceleration efficiency ~ 45.6%

#### Measurement

- Transmission efficiency ~ 98.5%  $(I_{ACCT-2} / I_{ACCT-1})$
- Acceleration efficiency ~ 46.5% (I<sub>FC</sub> / I<sub>ACCT-1</sub>)





LEAF ACCT Control System

ACCT-1 & ACCT-2



#### **Beam Energy**



#### Bunch length



#### TOF: Distance ~ 1.0689 m $\rightarrow$ Energy ~ 0.5 $\pm$ 0.001 MeV/u



# IMP

### First beam test of LEAF

# Transverse emittance after RFQ





#### RFQ CW commissioning @ 200 eµA He1+

Transmission ~ 97%, Acceleration ~ 50%



6 Hr



### Summary

Design of HIAF front end was completed based on studies of ion source beam quality, space charge effect in low energy beam transport, high intensity beam matching with RFQ.

Beam simulations show that the present design is robust to transport and accelerate very high intensity beams of highly-charged heavy ions.

■The LEAF has been successfully commissioned and accelerated beams to the energy as expected, satisfying the design specifications, which provides a good basis for HIAF Front end.



- LEAF Team Members
- Brahim Mustapha



Conference Venue: 509 Nanchang Rd. Hosted by Institute of Modern Physics, Chinese Academy of Sciences Conference Chair: Dr. Hongwei Zhao

co-Chair: Dr. Yuan He

eaw

# Thank you for your attention!

### **HIAT 2018** Lanzhou, China Oct. 22-26, 2018

http://hiat2018.csp.escience.cn/dct/page/1

ttp://hiat2018.csp.escience.cn