

RAON Beam Diagnostics System

Yeonsei Chung*, Gi-Dong Kim, Hyung-Joo Woo (IBS/RISP), Jangwon Kwon(Korea U.) yschung@ibs.re.kr

Concept of RAON

Rare Isotope Science Pro

RAON Beam Parameters

						RIS Bare Isotope Science Project
		Driver	Linac		Post Acc.	Cyclotron
Particle	H+	O ⁺⁸	Xe ⁺⁵⁴	U ⁺⁷⁹	RI beam	proton
A/Q	1	16/8 (2)	131/54 (2.4)	238/79 (3.0)	-	1
Beam energy per nucleon (MeV/u)	600	320	251	200	18.5	70
Beta (v/c)	0.79	0.67	0.62	0.57	-	0.37
Total beam energy (MeV) = Beam energy per nucleon * A	600	5,120	3,3012	47,600	-	70
Particle current (pµA)	660	78	11	8.3	-	1000
Charge current (eµA) = Particle current * Q	660	624	594	655.7	-	1000
pps (#/s) = Particle current / e = Charge current / (Q*e)	4.1 x 10 ¹⁵	4.9 x 10 ¹⁴	6.9 x 10 ¹³	5.2 x 10 ¹³	-	6.3 x 10 ¹⁵
Power on target (kW) = Beam energy per nucleon * A * Particle current = Total beam energy * Charge current / Q	400	400	400	400	-	70

ISOL Beam Parameters(Example)

Section (exit)	Section (exit) Ion mass range		Intensity range	Beam energy	Example of RIB
Cyclotron	1		max. 1.0 mA	35~70 MeV	
Target/Ion S.	6~160		10 ¹¹ ~10 ¹² pps	10~80 keV	¹³² Sn ¹⁺ , 20 keV
Pre-Separator	RI	6~160	10 ¹⁰ ~10 ¹¹ pps	"	¹³² Sn ¹⁺ , 20 keV
	test*		10 ⁹ ~10 ¹¹ pps	"	
HRMS	RI	6~160	10 ³ ~10 ¹⁰ pps	"	¹³² Sn ¹⁺ , 20 keV
	test		10 ⁸ ~10 ¹⁰ pps	"	
Charge Breeder	RI	6~160	10²~10 ⁹ pps	10 keV/u	¹³² Sn ^{(20~33)+} , 1320 keV
	Test		10 ⁸ ~10 ¹⁰ pps	"	

* test ions (stable) : ¹³³Cs, ⁸⁷Rb, ³⁹K, ²³Na, ¹³²Xe, ⁸⁴Kr ** 1 nA=6.24x10⁹ pps

Beam Diagnostics Functions

- Initial commissioning & Component tuning
- FC, WS, BV, CT, BPMs(position, phase, TOF), etc
- ✤ Beam specification; ex. Ar(9+), 30eµA, 50µs, 1Hz, …
- During operation(On-line)
- Monitor beam transport and acceleration function
- ✓ BPM : Beam position and phase
- ✓ BCM : Beam current and transmission(RFQ, SCL3(1), P2DT, SCL2, etc.)
- ✓ BLM : Beam Loss and link to Machine Protection
- ✤ Beam current is 1mA ~ 1µA
- Commissioning and during operation(On-demand)
- 1-D, 2-D profile distribution (WS, EM)
- Bunch length (FFC)

Layout of RAON Beam Diagnostics

SCL1 configuration is the same as the SCL3

Rare Isotope Science Project

Beam Position Monitor(BPM)

- Measurements : Beam Position, Phase, relative Intensity
- Button-type BPM; Kyocera-SMA feedthrough
- Curved type, Size: 20mmx30mm, Capacitance(each Button) ~ 8pF
 60 BBPMs for SCL3: Designed(RISP), Fabricated(Domestic Company)

BPM in the SCL Warm section

BPM Simulation

SCL12 exit

SCL21 exit

CST Particle Studio Repetition: 81.25MHz, ~ 12.3ns

BPM Signals in Frequency Domain

- Higher Harmonics(>2nd) signal is dominant after SCL11(SCL31)
- Signal Processing with 1st, 2nd harmonics for MEBT & SCL11(SCL31) 1st, 3rd harmonics for SCL12(SCL32)
- 60 BPM modules; being fabricated by a domestic company "mobils"

BPM Wire Test

11

BPM on stage is moving(x,y)

Yeonsei Chung | HB2018, RAON Be

Beam Current Monitor(ACCT)

Bergoz ACCT

- RAON Beam Current < 1mA
- 3Hz(Lower Cutoff, -3dB) ~ 300kHz(Upper cutoff, -3dB)
- t(droop) = 0.35/f(low, 3db) = 117ms
- t(rise) = 0.35/f(high, 3db) = 1.17µs
- V(output)/A(input) = 1000

ACCT Wire Test

- Rise time, Droop time

✤ 6 Bergoz ACCT(ID=48mm): Purchased & ready to be installed

Beam Loss Monitor(BLM)

Beam Loss Monitor

- Monitor Regular(slow) losses and Irregular(fast) losses
- Radiation Sources
- Radiation : neutron, proton, gamma, electron, ion for >~7MeV/u gamma, electron <~7MeV/u
- Outside of Vacuum Chamber(secondary) : gamma, neutron
- At Low energy region(ex. SCL11 or SCL31)
 - No or very low radiation level is expected
- X-ray from SC Cavity & RF source is background source to BLM
- Source term simulation(MCNPX) has been conducted throughout Linac Tunnel
- MPS(Machine Protection System) requirements are checked
- DBCM(Differential Beam Current Monitor) with ACCT networks is considered for primary fast loss detection
 - * CT networks : ACCT1 RFQ ACCT2 MEBT- ACCT3 SCL1(3) ACCT4)
- Plastic Scintillator, Proportional Counter, Halo Monitor Ring are being considered

Machine Protection System requirements

35 us = 15 us (sense) + 10 us (respond) + 10 us (latent beam in pipe)

*Slow loss (1W/m) ~100 ms (?)

Yeonsei Chung | HB2018, RAON Beam Diagnostics System

Rare Isoton

RAON BLM Layout(Preliminary)

	PC(IC)	PD	HMR	DBCM(ACCT)
QWR	-	-	X	X
HWR1	-	X	x	x
HWR2	-	x	x	x
SSR1	Х	-	x	X
SSR2	Х	-	Х	X

BLM, Proportional Counter

	Model	E6876-600		
a:	Manufacturer	Toshiba (Japan)		
AC)	Gas	$Ar + Co_2$		
	Response time	0.1 usec		
	Typical gain	1000 (at 2000 V)		

Benchmarking: (J-PARC, KOMAC Rare Isotope Science Project

BLM, Plastic Detector

Model	R2083A(Hamamatsu, ϕ 46mm)		
Gain (PMT _{gain})	2.5E6 (@ 3.0 kV)		
Scintillator material	BC408 (EJ-200)	\rightarrow This organic plastic is	
Density ρ_{BC408} of BC408	1.032g/cm ³	less sensitive to low energy X-ray and interact	
Scintillator size	ϕ 50.8mm, 300 mm	with fast neutrons (>50	
Light output <i>R_s</i> of BC408	0.1 photon/eV	scattering.	
Scintillator volume (V_{BC408})	193 cm ³		
$arepsilon_{cath}$ (420nm photon 기준)	23.6%		
Supply voltage of PMT	3.5 kV (Max.)		
Sensitivity (Scintillator+PMT)	117.5 C/rad $\cdot \varepsilon_{coll}$	\rightarrow 32.6 mA/ $(\frac{\text{rad}}{h}) \cdot \varepsilon_{coll}$	

$$S_{PD} = \frac{100 \ erg}{g \cdot rad} \cdot \rho_{BC408} \cdot V_{BC408} \cdot \frac{1 \ eV}{1.6 \cdot 10^{-12} \ erg} \cdot R_s(BC408) \cdot \varepsilon_{coll} \cdot \varepsilon_{cath} \left[\frac{electron}{photon}\right] \cdot \frac{1.6 \cdot 10^{-19}}{electron} \cdot PMT_{gain}$$

* ε_{coll} : collection efficiency to photocathode * ε_{cath} : efficiency of photon \rightarrow photoelectron (50%~70%)

BLM, Halo Monitor Ring

Yeonsei Chung | HB2018, RAON Beam Diagnostics System

SSR2

600

5.21

8.68

SCL3 Warm Section

- BPM inside(Center) of Quadrupole Magnet
- Installation(&align) procedures are prepared, tested

Beam Diagnostics System, Vacuum Chamber for SCL3 Warm Section

Prototype installed at SCL Demo - WS, FC, Vacuum

- Up to 8 ports available
- 3 Diagnostics Device(FC, WS, PD)
- Vacuum System

Beam Diagnostics Chamber with BPM/Beam Pipe

Vacuum Chamber with BPM/Beam Pipe

LEBT Beam Diagnostics

Large BPM @ P2DT

- Intensive CST Simulation
- Just Fabricated (Still Prototype)
- Vacuum check done
- Ready for wire test

At SCL Demo

At SCL Demo

2018, RAON Beam Diagnostics System

ISOL Test Facility

Beam diagnostics @ISOL Test Facility

Beam viewer

Wire grid (NTG) at high-rad area

Beam diagnostics chamber at the end of the offline ISOL facility

Oscillating wire scanner & Allison-type emittance scanner (D-Pace)

FIG. 3. Operation principle of a foil-based secondary emission monitor.

SE-BPM

DAQ System

- BPM standalone (with Timing, Trigger, Interlock, etc.)
- ✓ Preproduction version will be ready(Oct. 2018) for evaluation test
- > Others(WS, FC, CT, BLM, etc.) with μTCA system
- ✓ CAENels AMC-pico; 8ch 20bit Picoammeter
- ✓ Vadatech DAQ523; 12ch 16bit voltagemeter

Summary and Plan

- BPM(Beam Position Monitor)
- Fabricated 60 Button-type BPM for SCL3
- BPM controller for 60 BPMs are being produced by domestic vendor
- A prototype of Large(P2DT section) BPM is being tested
- ➢ BCM(ACCT)
- Tested at SCL Demo and showed a good sensitivity to measure ~ few μA
- 6 Bergoz ACCT are ready for installation
- BLM(Beam Loss Monitor)
- Plastic Scintillator+PMT, Proportional Counter, HMR are being considered
- 3 PC(Toshiba BLM) are in our test lab., will be calibrated
- DBCM(ACCT networks) will be used for primary MPS
- ➢ FC, WS, PD, FFC, Phase Probe, EM, etc.
- 1 each(at least) has been fabricated and tested
- Readout and control systems are being designed

감사합니다