

High Intensity Proton Studies at RAL

Chris Prior

ISIS, Rutherford Appleton Laboratory, U.K.

Background

- » Upgrading ISIS to preserve its status as a world leading neutron and muon facility.
- » Exploring options for a future multimegawatt facility on a 20-year time-scale
- » Include ideas that could be feasible with advances in technology
- » Gain benefit through collaborations with laboratories like CERN and from the developments at future facilities overseas, particularly in China (C-HIAF, C-SNS)

ISIS Accelerators

- » 665 kV H⁻ RFQ
- » 70 MeV H- linac
- » 800 MeV proton synchrotron
- » Extracted proton beam lines

Average beam current 220 μ A (2.8 × 10¹³ ppp).

176 kW on target (140 kW to TS-1 at 40 pps, 36 kW to TS-2 at 10 pps)

Neutrons in Europe

- » ESFRI ESFRI Physical Sciences and Engineering Strategy Working Group Neutron Landscape Group - Neutron scattering facilities in Europe: Present status and future perspectives:
 - » identified a shortage of neutrons in Europe after ILL closes.
- » Possible upgrades to ISIS under study for many years, but now is a good time to refocus given the advent of ESS and the impending 'neutron drought' in Europe.
- » ISIS-II Working Group has been set up, and consists of experts from accelerator, target, neutronics, instrument science, detector and engineering.
- » Important to stress that this must be envisaged as a facility upgrade, not simply an accelerator upgrade

Ideas for ISIS MW-level Upgrades

- » Provision for multiple optimised targets with different beam powers, repetition rates, according to user requirements
- » Options for future upgrades to multi-MW (perhaps using stacked rings)
- » Advanced facility for both neutrons and muons
- » Concepts:
 - 0.8 GeV superconducting linac + 0.8-3.2 GeV Rapid Cycling Synchrotron
 - Fixed Field alternating gradient Accelerator: lower injection energy, higher efficiency and reliability, operate at high intensity
 - Higher energy linac + accumulator ring
 - A completely new accelerator within existing ISIS infrastructure (provided off-time can be tolerated)
 - Likely to be cheapest possible option
 - Only ISIS-II option that guarantees the facility stays in the UK (and at RAL)

Compact Neutron Source

- » Recent interest in a compact short pulse option with proton energy in the range 14 – 20 MeV
- » Could be an extension of the Front End Test Stand at RAL.

» Other alternative uses (e.g. fusion materials irradiation, single event effect testing with protons) could be considered.

Compact Neutron Source

» Studying FFA alternatives to take output from FETS (3 MeV) directly to required energy and pulse structure

- Study high intensity beam dynamics to establish whether FFAs are really a possibility for ISIS-II
- Prototype relevant components
- Ties in with IBEX Paul trap experiment set up at RAL (talk by Suzie Sheehy on Wednesday morning)

Туре	DF-Spiral		
Kinetic energy	3 - 27 MeV		
Pex/Pin	3		
Cell number	8		
Packing f	0.31		
Spiral angle	20		
Field index	3		
Orbit excursion	0.48 m		
Rex/Rin	2.1 / 2.6 m		
Bmax@orbit	1.7 (1.9) T		
Straight	1.1 m		

- » Lower risk (but less interesting) alternative is warm DTL to required energy, followed by an accumulator ring.
- » Should be used to allow us to demonstrate technology readiness in areas we are not covering under another banner (ISIS sustainability, other UK proton R&D).

ISIS-II

- » Focussed on ~1 MW short pulse neutron and muon facility using existing ISIS tunnel (R~25 m).
- » Beam should supply one or more targets.
- » Studies cover a new accumulator ring (AR), a rapid cycling synchrotron (RCS) and novel fixed field rings (FFA).
- » Prototype test ring planned using existing 3 MeV FETS (Front End Test Stand) as injector.

Science & Technology
Facilities Council

ISIS-II Conventional Accumulator and RCS Options

- » Aim to find the optimal configuration for ISIS II
 - Study conventional AR and RCS in detail: Compare with FFA ⇒ pick the best
 - Specification from users: Two targets 10 Hz, 0.25 MW; 40 Hz, 1.0 MW
- » Important considerations:
 - Re-use of ISIS infrastructure or stand-alone
 - Conservative design, or are gains possible by pushing established limits
- » Presently looking at 1.25 MW options for ISIS Hall, R=26 m
- » Have revisited old ESS (1996) design: 1.3 GeV AR, R=26 m
 - Interesting lattice and dispersive injection
 - Some re-working of dynamics and new simulation studies
 - Plausible 1.25 MW: limits on foil temperature and loss
- » Now looking at new RCS designs
 - Cheaper linac
 - Key challenges: foil temperatures, losses

ESS rings

ISIS-II: Present RCS Design under Study

Outline Specification*

Energy Range	0.4 - 1.2 GeV
Intensity	1.3×10 ¹⁴ ppp
Repetition Rate	50 Hz
Mean Power	1.25 MW
Circumference (mean R)	163 m (26 m)
No. Super-periods	3
Nominal Tunes	$(Q_x, Q_y)=(4.40, 4.36)$
Magnet Excitation	Sinusoidal
Dipole Fields	0.49 – 0.99 T
Gamma Transition	3.78
Peak RF $h = (2, 4)$	(240, 120) kV/turn
RF Frequency $(h = 2)$	2.62 – 3.30 MHz
Number of Bunches	2

- » 3 SP ring fits within ISIS hall and is aligned to accommodate existing injection and extraction paths.
- Lattice has long achromatic straights for H⁻ injection, extraction, RF and collimation

^{*}See IPAC18, D J Adams et al., TUPAL058

Beam Studies and Intensity Limits

Performance of RCS at 1.25 MW

- » Numerically optimised injection painting
 - Reduces foil hits to ~2.3
 - Carbon foil temperatures ~1800 K
- » 3D ORBIT simulations, losses in 0.02% regime
 - Error study underway
- » Much optimisation and study to do
 - Injection process (emittance evolution)
 - Space charge, working point
 - Instabilities, collimation, extraction

Comparative assessment of other rings

- » Will repeat study for
 - Lattice variations, AR, standalone
 - Topics that overlap with FFA work
- » Limiting factors, interesting ideas
 - Run with higher space charge: predict loss?
 - Larger apertures, direct proton injection
 - Two stacked rings make 2.5 MW possible

Centroid painting vs time

Tune footprint after injection

Simulations with ORBIT

Fixed Field Accelerators (FFA)

- » FFAs may be a good choice for a high intensity machine in view of their flexibility
 - no ramping, stable dc power supplies
 - high repetition rate (100 Hz and up), restricted only by rf programme
 - increased beam power
 - ability to match users' requirements
 - horizontal beam extraction easier
- » Large momentum acceptance; particles with injection and extraction energy can circulate at the same time;
 - beam stacking
 - horizontal emittance can be enlarged
- » Superconducting or permanent magnets can be used
 - high energy efficiency, high availability, low operational costs

Studies have covered several types of FFAs (scaling, non-scaling, pumplet) but are now focussing on the DF-spiral. (Machida, Phys.Rev.Lett. 119, Aug 2017). A 0.4-1.2 GeV main ring and a 3-30 MeV test ring are being considered.

DF-Spiral FFA

» Combines features of radial and spiral FFAGs to give a compact, versatile design

$$Q_h^2 = k+1$$

 $Q_v^2 = -k+f^2 \tan^2 \zeta$ where $\begin{cases} \zeta = \text{ spiral angle} \\ f = \text{ flutter} \end{cases}$

$$\zeta$$
 = spiral angle f = flutter

$$B = B_0 \left(\frac{r}{r_0}\right)^k \left\{1 + f\cos\left[N_{\text{cell}}\theta - N_{\text{cell}}\tan\zeta\ln(r/r_0)\right]\right\}$$

Introduce small negative field on one side of main spiral magnet to generate sharp edge between D and F and increase flutter f.

ISIS-II based on DF-Spiral FFA

Find sets of parameters for both a main ring for the ISIS tunnel and a small prototype test ring to go on FETS

Basic considerations for design:

- » Choice of number of cell
- » Choice of spiral angle
- » Orbit
 - Excursion
 - Magnetic field along the orbit
- » Optics
 - Courant-Snyder parameters
 - Range of parameters for injection study
- » Tuning adjustment
- » Acceptance and space charge effects
- » RF parameters

ISIS-II and Test Ring Parameters

Parameter	ISIS-II	Test Ring
Kinetic energy	$0.4\text{-}1.2\mathrm{GeV}$	$3-30\mathrm{MeV}$
Mean radius at injection	$\sim 24\mathrm{m}$	$4\mathrm{m}$
Number of cells	$\mid 25$	15
Magnet length (D,F)	$(0.60\mathrm{m},1.21\mathrm{m})$	$(0.17\mathrm{m},0.34\mathrm{m})$
Packing factor	0.35	0.35
Straight section	$3.58\mathrm{m}$	$1.03\mathrm{m}$
Spiral angle	62°	41°
k index	20.6	7.2
B_d/B_f	-0.47	-0.36
Orbit excursion	$0.8\mathrm{m}$	$0.6\mathrm{m}$
Nominal cell tune (H,V)	(0.20760, 0.20960)	(0.21267, 0.21600)
Nominal ring tune (H,V)	(5.19, 5.24)	(3.19, 3.24)
Transition gamma	4.6	2.9

ISIS-II and Test Ring: Orbit and Optics

Space Charge Tune Shift

» Space charge tune shift becomes about **-1.0** when a 50 mA FETS beam is injected for one turn.

- » Can we hold such high space charge beams in a ring?
- » Similar questions were asked at the UMER project at University Maryland (but that is an electron ring).
- » We could use the (pulse compressed) beams for some applications.

Intensity Limit

- » Inject 10, 20, 30, 40, 50 turns of 50 mA linac beam and look at beam size and fraction surviving.
- » An rf voltage is applied and the beam is captured in a bucket.

- » 20 turn accumulation (1 A) seems a hard limit. How do we interpret this?
 - 50 mA causes tune shift of -1.0.
- » Beams end up with similar distributions

Proton Beam Accumulation

- » Traditionally achieved via H- charge exchange injection (non-Liouvillean)
 - » Complicated injection chicane
 - » Needs a mechanism for handling unstripped H^{-,} partially stripped H⁰ excited states and removal of stripped electrons
 - » Foil traversals leading to heating and lifetime issues, nuclear scattering, multiple scattering, foil replacement system
 - » Intra-beam stripping in linac and injection line
 - » These all contribute to beam loss.

» Direct proton injection (Liouvillean) is a possible alternative

Direct Multiturn Injection of Protons

- » Liouvillean injection using a tilted electrostatic septum.
- » Injection simultaneously into 4D transverse phase space
- » Optimise *h* and *v* closed orbit bumps to minimise beam loss
 - equivalent to minimising foil traversals in an H⁻ system
- » Simple injection chicane.
- » Challenges the idea that the accumulation of a high intensity, pulsed, proton beam can only be achieved via charge exchange injection of H⁻.
- » Relies on developments in technology over the past 20 years.
- » Builds on techniques used for optimising H⁻ injection systems developed for ESS/SNS/J-PARC/CSNS etc.
- » Adopted at C-HIAF and under study as a possible option for a neutrino superbeam facility at ESS (ESSnuSB)
- » Note that higher currents are available for a proton linac *cf* H⁻.

Injection

- » Requires careful choice of septum angle θ and ring optics (tunes, β -functions at injection point).
- » MISxxx codes developed to provide initial parameters of the system (zero spacecharge). (See talk WEAM6X01 at HB2016)
- » Multiple studies suggest that a reliable 'Figure of Merit' is

$$\mathcal{F} = \frac{(\epsilon_x \epsilon_y)_{\text{Ring}}}{N_{\text{turns}}(\epsilon_x \epsilon_y)_{\text{injected}}} \approx 10$$

» Directs design:

$$\frac{Ne\beta c}{2\pi R} = \chi I_l N_{\text{turns}}$$

$$\implies \chi I_l = N \left(\frac{\epsilon_i}{\epsilon_R}\right)^2 \mathcal{F} \frac{e\beta c}{2\pi R} \lesssim 200 \,\text{mA}.$$

chopped linac current

emittance ratio for total of N particles in ring

250 turns proton injection for ISIS-II, zero space-charge model

Injection Optimisation

» Important parameters are angle of septum, closed orbit bumps

and ring tunes.

White areas represent combinations of tunes for which a tilt angle and orbit bumps can be found for a painting scheme with zero beam loss. Black areas correspond to full beam loss

•

» Designs from the MIS-codes (Multiturn Injection Schemes): MISHIF, MISOPT, MISPLOT

Optimum conditions for packing turns together

$$\frac{\alpha_i}{\beta_i} = \frac{\alpha_m}{\beta_m} = -\frac{x_i' - x_o'}{x_i - x_o}$$

$$\frac{\beta_i}{\beta_m} \ge \left(\frac{\epsilon_i}{\epsilon_m}\right)^{\frac{1}{3}}.$$

m = machine (ring)

i = injection turn

o = closed orbit

150 Turn Injection into DF-Spiral Main ring

- For $N=13.2\times 10^{13}$, $\epsilon_{\rm ring}=100\,\pi\,{\rm mm.mrad}$, deduce $\epsilon_{\rm i}\lesssim 2.7\,\pi\,{\rm mm.mrad}$ and 150 injection turns
- Likely linac emittance of 5π mm.mrad must therefore be collimated

Plots show output from the geometrical injection optimisation code MISHIF for 150-turn lossless injection into a DF-spiral ring at 400 MeV using a tilted electrostatic septum. In the model, a maximum chopped linac current of 200 mA is assumed and a septum of 0.1 mm thickness. Tunes are $(Q_x, Q_y) \sim (5.19, 5.24)$. Without collimating the linac beam, the loss rises to over 20%.

50 Turn Injection into DF-Spiral Test Ring

Similarly for the scaled-down DF-spiral test ring with the same tune depression, 50-turn lossless injection at 3 MeV requires

$$\frac{\epsilon_{\rm ring}}{\epsilon_{\rm i}} \gtrsim 22$$

A chopped linac current of $0.54\,\mathrm{mA}$ with normalised (100%) emittance $0.18\,\pi\,\mathrm{mm.mrad}$ can be used to paint a ring emittance of $4\,\pi\,\mathrm{mm.mrad}$.

The tunes are optimised to (5.15, 5.24).

Summary and Comparison

Parameter	Main Ring		Test Ring
	$50\mathrm{Hz}$	$100\mathrm{Hz}$	$100\mathrm{Hz}$
Kinetic energy at injection (MeV)	400.0		3.0
Final kinetic energy (MeV)	1200		30.0
β	0.713		0.0798
$\beta\gamma$	1.017		0.080
100% normalised, painted emittances (π mm.mrad)	100		4
100% unnormalised, painted emittances (π mm.mrad)	98.32		49.98
100%, normalised, linac emittances (π mm.mrad)	2.5	4.0	0.18
100% unnormalised, linac emittances (π mm.mrad)	2.46	3.93	2.25
Chopped linac beam current (mA)	200.00		0.56
Number of ions N	13.2×10^{13}	5.7×10^{13}	13.8×10^{10}
Mean radius of ring (m)	24		3
Expected maximum tune depression $(\times B_f)$	0.22	0.1	0.1
Number of injected turns $N_{\rm turns}$	150	65	50
Mean beam power	$1.27\mathrm{MW}$	1.1 MW	66 W

Electron Test Ring (RCS model)

fDfDf Pumplet Lattice, R=5 m

- Electron test ring scaled from main ring RCS study with same tune depression.
- At 1.5 MeV, assume $N_{\rm turns} \geq 30$ sufficient for validation
- $\epsilon_{\rm ring} \approx \epsilon_{\rm i} \sqrt{\mathcal{F} N_{\rm turns}} \gtrsim 17 \epsilon_{\rm i}$
- For $\epsilon_{\rm i} \sim 2.5 \,\pi\,{\rm mm.mrad}$, $\epsilon_{\rm ring} \gtrsim 11.4 \,\pi\,{\rm mm.mrad}$.
- For same tune depression as main ring, deduce $\chi I_l \approx 3.5 \,\mathrm{mA}$ so $N = 7 \times 10^{10}$ electrons can be accumulated.

e-RING Injection

Electron ring tracking (incl. space-charge). Unoptimised scenario: 30 turns with nominal tunes Q_h=2.4458, Q_v=1.7449. Predicted lossless without space-charge; loss with space-charge is about 7%.

BEAM LOSS with TIME

Summary

- » A future new short pulse neutron/muon facility is planned for the U.K. to meet the shortfall in provision after ~2030.
- » Options include a new H⁻ linac and RCS, and a DF-spiral fixed field accelerator with direct proton injection.
- » A scaled-down test ring is planned using the existing injector test facility
- » We are also working on an accumulator ring for an ESS neutrino superbeam facility (~1500 turns direct proton injection)

