

FRIB SRF Cryomodule Performance Testing and Status

John Popielarski HB 2018

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Outline

- Cryomodule production status and overview of FRIB cryomodule production process
- SRF cavity and cryomodule certification methods, results and mitigations
- RF commissioning progress in the Linac

Status

- 79% of cavity certification complete
- 73% of coldmass assemblies are complete (36 of 49)
- 53% cryomodule fabrication is complete (26 of 49)
- 47% cryomodules certified and installed in FRIB linac
- RF commissioning underway for the first three FRIB cryomodules installed in FRIB linac

FRIB Low Beta SRF: 4 cavity types, 6 cryomodule types, 332 cavities, 49 cryomodules

Facility for Rare Isotope Beams

The FRIB site has all the infrastructure needed for the technical construction and testing of SRF cryomodules

Cryomodule assembly area: 5 construction bays and 1 test bunker

SRF Cavities Certified in Vertical Test Area before Assembled onto the Cold masses

- Vertical Testing of SRF cavities has throughput of one cavity test per day.
- We use 2 Dewar pits and alternate the test location each day.
- After cavities are certified in VTA, they are stored until they are installed on to the cold mass rails

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Vertical Test Results

FRIB 085 QWR

- In the first part of the beta=.085 QWR production, we had inconsistent VTA results do to improper sealing of the indium seal flange.
- With the inconsistency, we could not accurately study the effect of low temperature baking (120C, 48 hrs).
- After resolving bottom flange sealing issue, we can study the effect of low temperature bake.
- A test done on June 13 shows improvement in the high field Q at 4K, but not much improvement at 2K.
- This result is similar to a study done for ReA cavities (beta=0.085 QWRs with smaller aperture)

HWR Cavity Tuning: The spread in tuning sensitivity requires a tuning range measurement prior to final chemistry

- The usable tuning range is ~30 kHz
- Final tuning of HWR is done by chemical removal on the niobium RF surface
- We can tune to about +/- 10 kHz accuracy at 2K (main spread is the cool down frequency shift)
- Frequency shifts due to tuner brackets and tuning sensitivity are ~ +/- 10 kHz
- The sensitivity and bracket shifts reproducible: A warm tuning range measurement can remove 50% of the uncertainty

FRIB Fundamental Power Coupler for HWR

- The HWR FPC is a warm window coaxial feedthrough
- 128 have been installed in cold masses
- 220 have been shipped from vendor with coupler conditioning completed
- Some of the early shipped FPC's were contaminated by shipping container. These were cleaned and reconditioned at FRIB site

Cryomodule Certification and Tunnel Installation Status

Туре	Coldmass completed	Cryomodule assembled	Cryomodule Cryomodule in bunker tested tunnel		Cryomodule needed (Total + Spare)	
0.041QWR	4	4	4	3	3 +1	
0.085QWR	11	11	11	11	11+1	
0.085 Matching	1	1	1 1		1 +1	
0.29HWR	12	7	5	5	12	
0.53HWR	7	2	2	2	18	
0.53 Matching	0				1	
Total	35 complete (+1 ongoing)	25 complete (+4 ongoing)	21+1 complete (+1 ongoing)	22	46 + 3	
June 2018	33	24	21	19		

Bunker Test

- FRIB Cryomodules are fully tested before installation in the FRIB tunnel. 23 cryomodules have been certified so far.
- We do calibration and check for Xrays, gradient, LLRF locking, heat load, magnet operation, tuning range
- We save the calibration records and LLRF settings for review in linac commissioning

Example: Calibration record for 041 Cryomodules

		Coromodulo SNI SCIMOI					SCIMI02				500402			
		Position	1 2 3			4					3Cm405			
	Information	Cavity SN	\$41-005	541-001	541-014	541-012	S41-002	541-011	S41-006	s41-007	S41-016	S41-004	S41-003	s41-009
_		LLRESN	S01004	S01005	S01006	S01007	S01008	S01009	S01010	S01011	S01012	S01013	501014	S01015
		Dual Dir, Coupler SN	D1127	D1136	D1142	D1150	D1161	D1169	D1176	D1184	D1195	D1203	D1209	D1218
		Amplifier SN	S01004	S01003	S01002	S01001	S01012	S01013	S01014	S01016	S01008	S01009	S01010	S01011
Warm	Warm Calibrations (low level)													
		Pf coupling (ddc)	-50.00	-50.00	-50.00	-50.00	-50.000	-50.00	-50.00	-50.00	-50.00	-50.00	-50.00	-50.00
		Pr coupling (ddc)	-50.00	-50.00	-50.00	-50.00	-50.00	-50.00	-50.00	-50.00	-50.00	-50.00	-50.00	-50.00
	ecks	Pf line loss	-1.81	-1.84	-1.87	-1.90	-1.995	-2.05	-2.04	-2.08	-1.83	-1.87	-1.88	-1.94
	d Ch	Pr line loss	-1.79	-1.86	-1.87	-1.89	-2.02	-2.05	-2.03	-2.05	-1.83	-1.87	-1.91	-1.91
	ns ar	Pickup line loss	-1.74	-1.82	-1.86	-1.91	-2.01	-2.04	-2.04	-2.09	-1.82	-1.89	-1.89	-1.94
	oratio	Pr line S11 (looking back)	-23.893	-22.92	-20.783	-22.947	-24.255	-23.474	-21.549	-22.443	-25.344	-22.617	-25.766	-24.483
	Call	Pf line S11 (looking back)	-21.506	-24.43	-21.361	-22.912	-24.845	-24.032	-22.285	-23.411	-24.832	-24.575	-25.649	-25.602
	Warn	Pickup S11 (looking back)	-24.087	-22.85	-21.228	-21.901	-24.013	-23.716	-21.724	-22.301	-24.712	-23.881	-20.2	-24.934
		Input S11	-0.0175	-0.0143	-0.0126	-0.0128	-0.0243	-0.0189	-0.0164	-0.0206	-0.017	-0.0151	-0.0165	-0.0179
		Pickup S11	-0.4186	-0.4186	-0.4227	-0.3984	-0.4556	-0.4661	-0.4594	-0.4989	-0.4507	-0.4734	-0.4109	-0.4659
Cold Measurements and calibrations (low level)														
	le l	RF BW	34.6	35.3	34.5	26.8	40.3	35.6	37.0	33.8	37.5	39.5	36.5	37.0
	a we	Decay time (ms, energy -6 d	6.37	6.24	6.40	8.22	5.48	6.20	5.97	6.53	5.88	5.59	6.04	5.96
	and k netns	521	-34.69	-34.86	-34.45	-34.41	-35.95	-34.90	-35.00	-35.40	-35.67	-35.51	-35.22	-35.06
	ions : surer	input S11	-0.028	-0.026	-0.030	-0.027	-0.019	-0.024	-0.008	-0.021	-0.022	-0.030	-0.027	-0.035
	mea	pickup S11	-0.251	-0.243	-0.250	-0.223	-0.292	-0.310	-0.276	-0.302	-0.244	-0.324	-0.284	-0.313
	kd Ca	fmin	80.4900	80.4964	80.5000	80.4886	80.4980	80.4980	80.4962	80.4974	80.4944	80.4923	80.4975	80.4940
	S	fmax	80.5152	80.5081	80.5121	80.5126	80.5095	80.5142	80.5114	80.5058	80.5044	80.5060	80.5069	80.5066
	, IT	Qe1	2.32E+06	2.28E+06	2.34E+06	3.00E+06	2.00E+06	2.26E+06	2.18E+06	2.38E+06	2.15E+06	2.04E+06	2.20E+06	2.17E+06
	tand ation	Qe2+	2.6E+10	2.7E+10	2.5E+10	3.2E+10	3.0E+10	2.7E+10	2.7E+10	3.2E+10	3.1E+10	2.8E+10	2.8E+10	2.7E+10
	alibr	Ea_scale	2.01	2.03	1.96	2.21	2.15	2.02	2.01	2.20	2.16	2.06	2.07	2.02
	le m c	Pt_scale	1.240	1.250	1.256	1.261	1.281	1.287	1.285	1.294	1.250	1.267	1.263	1.273
	sys	PF_scale	389.49	390.62	391.97	393.32	397.88	400.18	399.94	401.56	390.17	392.19	392.42	395.37
_	S	Pr_scale	388.60	391.52	392.19	392.87	398.80	400.18	399.48	400.18	390.17	392.19	393.78	394.00
High P	ower RF N	leasurements (Linac Secured	1)									-		
		Ea_max						5.61	5.6	5.5	5.6	5.59	5.67	5.6
	IRF ents	Pnom (at Ea = 5.1)	230	235	175	185	250	190	230	260	330	240	215	290
	uren	Xstar (at Ea=5.1)	0	0	0	0	0	0	0	0	0	0	0	0
	High M eas	decay: ai (dBm)	-26.37	-23.8	-46.22	-47.8	-47.81	-47.24	-47.5	-48.08	-48.51	-32.94	-34.14	-47.95
		decay: dA (dB)	-6	-6.01	-6.01	-5.99	-6	-6.02	-5.99	-6	-5.99	-5.98	-6	-5.99
		decay dt (ms)	6.72	5.4	7.48	8.64	5.96	5.44	6.4	7.32	6.76	5.12	4.88	7.12
	QL verrify	QL from decay	2.45E+06	1.97E+06	2.73E+06	3.15E+06	2.17E+06	1.98E+06	2.34E+06	2.67E+06	2.47E+06	1.87E+06	1.78E+06	2.60E+06
		FF phase (deg)	170	65	-85	45	-140	160	-75		10	-98	10	-143
		FCO (deg)	-123	-116	-80	- /0	65	-83	-97	8/	-65	-20	-55	1/4
	s	Tuner dead zone (deg)	8		10	10	10	8		12	10	10	10	10
	ettin	Tuner speed	2	2	2	1	2	2	2	2	2	2	2	2
	tems	Rhase Rame Rate (deg/s)	m/s)								0.02	0.02	0.02	0.02
	F sys	Flase Kallip Kate (deg/s)	6000	8000	8400	8200	0400	7900	6200	8700	6700	8000	0.3	7200
	Attenus	odec: RW(Hz)	0000	3500	3400	300	3400	7800	0300	8/00	0/00	8900	3000	7300
		adre: W0/WC	35	35	34	30	40	30	3/	34	38	40	30	3/
		adre: BWC (rad/s)	750	750	750	750	600	750	750	600	600	600	600	600
		RF Out Attenuation (r/R)	10.0	15.5	14.0	15.5	12.0	12.5	13.0	11.0	15.0	13.5	16.5	14.5
		Cay Attenuation (dB)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
	4	Pf Average (W)	450	430	430	430	450	430	430	480	430	430	430	430
	sibus	Pf Average Time (ms)	430	430	430	430	430	430	430	430	430	430	430	430
	Setti	Pf Instantaneous (M)	600	600	600	650	600	750	600	700	600	600	600	600
	terloc	Pr Average (W)	650	740	740	780	800	740	740	800	800	800	800	800
	2	· · · · · · · · · · · · · · · · · · ·												

John Popielarski, HB2018, June 19 2018, Slide 12

Bunker Test Results: Example Beta=0.29 322 MHz HWR

- Bunker test took place over 2 weeks after cool down
 - Bandwidth, pass
 - FRIB specification: 57.0 Hz
 - 70.3 ± 5.5 Hz, larger a little but okay
 - 4K High Power Test, pass
 - Cavities were excited > 7.7 MV/m with forward power < 2 kW
 - Field emission on Cavities 2,3,5, and 6 has X-ray < 2 mR/hr at the operation gradient 7.7 MV/m.

John Popielarski, HB2018, June 19 2018, Slide 13

SCM204 Bunker Test Result, continued

RF locking for all cavities at 4K for > 1hr, pass

- All cavities except cavity 3 were successfully RF locked at 7.7 MV/m for 1 hr at 4.3 K with -1 kV coupler bias voltage.
- Cavity 3 was locked 0.5 hr, then tripped due to outside building construction noise.
- All cavities meets the spec: cavity field amplitude \pm 1%, phase stability \pm 1°.

SCM204 Bunker Test Result, continued

- 2K dynamic static load, pass
 - 1.6 W/cavity, corresponds to Q₀=1.2 E10
 - Conserves the high Q performance in cryomodule VTA $Q_0 = 1.4 \pm 0.2 E10$
- Demonstrated robust solenoid package operation, pass
 - No quench
 - Operated solenoid at ± 91A, dipoles ±19A
- Static heat load, pass
 - 2K header 6.3W (spec 5.1W)
 - 4K header not measured

Facility for Rare Isotope Beams

The Coupler Multipacting in HWR cryomodule depends on cavity field and standing wave phase

- Without DC bias
 - RF trip due to coupler vacuum pressure rise: >2x10⁻⁷ Torr
 - » X-rays and minor temperature rise were also detected
 - » Cavity field drops were observed in SCM202, thought to be cavity quench
 - The onset level (RF power/cavity voltage) changes with the detuning phase (more detuning, lower onset power)
- We are installing DC bias for all HWR FPCs (so far in all the bunker tests there are no multipacting when DC bias is used)
- Bias operation is validated by operating max power, detuned (worst case according to the model)

CA RF Commissioning: Beta=0.041 cryomodules

- RF Commissioning on 1st 3 cryomodules in progress
- So far 10 Cavities (of 12) locked at 10% higher gradient than the specification (5.1 MV/m Eacc)

3 β=0.041 Ciryomodulos 500 keV/u RFQ

John Popielarski, HB2018, June 19 2018, Slide 17

RF commissioning status: Still doing the final system debugging

Position	Gradient	Amplitude Stability (%)		Phase Stabil	ity (degree)	RF Power us	Lock time			
	(MV/m)	pk-pk	rms	pk-pk	rms	Average	Peak	HRS		
1	5.6	0.13	0.01	0.37	0.04	274	335	7.5		
2	5.6	0.13	0.01	0.35	0.04	284	307	7.5		
3	5.6	0.13	0.01	0.37	0.04	213	281	7.5		
4	5.6	0.13	0.01	0.37	0.04	227	302	7.5		
5				Work in I	Progress					
6	5.6	0.15	0.01	0.48	0.05	225	350	7.5		
7	5.6	0.09	0.01	0.47	0.07	232	265	7.5		
8	Work in progress									
9	5.6	0.1	0.01	0.37	0.04	321	381	6.5		
10	5.6	0.1	0.01	0.37	0.04	306	502	6.5		
11	5.6	0.1	0.01	0.37	0.04	270	443	6.5		
12	5.6	0.1	0.01	0.37	0.04	261	306	6.5		

Facility for Rare Isotope Beams

Linac RF Commissioning: Detuning and forward power use

- In cryomodule 2 and cryomodule 3, there is still some forward power spikes even though the cavities stay locked and within control specification
- We have found matching patterns in other PVs and we are still working to debug the system

Facility for Rare Isotope Beams

RF Commissioning Goals

- Bench mark field emission before opening gate valves and beam commissioning.
- Calibrations checked, cavities can lock to reference within amplitude and phase specifications (<1%, <deg pk-pk)
- Cavities can turn on with automatic process in the software
- Amplitude, phase adjustments can be made as needed for beam commissioning.
- Verify long term stability

Conclusion

- Cryomodule performance testing is staying on pace with the cryomodule production and linac installation
- Bunker testing will continue for every cryomodule
- No major setbacks in bunker tests
- Linac RF commissioning is underway in the 1st segment

