New beam dynamics design for iLinac of HIAF

Liu Shuhui

On behalf of Linac Center

Institute of Modern Physics (IMP) ,Chinese Academy of Sciences Lanzhou, China

General introduction

Physics design of RFQ

Physics design of SC section

Summary

HIAF Layout

近代物理研究所

iLinac operation mode

New Design of iLinac

- Kp<1.5 @ CW to keep operational stability and keep the Kp value not too high at pulse mode
- Optimize the design parameters to minimize the beam loss at high energy part to improve operational stability of RFQ and avoid the activation problem
 - Iongitudinal emittance of RFQ / acceptance of SC section < 1/5 minimize the beam loss possibility at SC section
- The output energy of RFQ is 1 MeV/u—considering the difficulty of tuning the field and rf power & beta option of low energy SC section

Parameter	Values
I/O energy(MeV/u)	0.014 / 1
Kilpatrick	<1.5 @cw
Design particle	²³⁸ U ⁴⁵⁺ @cw
Output99.9% longitudinal emit (pimm•mrad)	3.5
Length (m)	<10m
Transmission efficiency@pulse (%)	>95%

Physics design of RFQ

0.4 X LENT VS CELL HUHLPL 0.2 0.0 0.4 Y (CM) VS cell number 0.4 V (CM) VS cell number 0.4 V (CM) VS cell number 0.5 V (CM) VS cell number 0.6 V (CM) VS cell number 0.7 V (CM)	420 420 420 420 420 420 420 420	210 280 350 420 420 420 420 420 420 420 420 420 42
3.0 -3.0 -6.0 96.28 70 140 210 280 350	3.0 0.0 -3.0 420 -6.0 70 140	
Parameter	Voltage constant	Voltage ramp
Kilpatrick	1.7pulse@1.48cw	1.7pulse@1.48cw
Vane voltage (kV)	67	67~120
Length (m)	13.02m	10.74m
RMS Longitudinal emittance (πmmrad)	0.66	0.54
99.9% Longitudinal emittance (πmmrad)	5.57	4.58
Transmission efficiency@pulse (%)	96.2%	93.8%

For decreasing the longitudinal emittance

LEAF RFQ —— scheme with three harmonic buncher + non - 90 ° synchronous phase are studied to reduce the longitudinal beam emittance.
CMIF RFQ —— scheme with internal buncher is used to reduce the longitudinal beam emittance.
CiADS RFQ —— scheme with small energy acceptance to reduce longitudinal emittance

For shortening the total length

Separated RFQ — External harmonic buncher + non - 90 ° synchronous phase injection. The length can be shortened by about 25% in the Leaf project **Voltage ramp** — High acceleration efficiency in the high energy part of RFQ. The length of the RFQ was shortened by about 30% in CPHS (IPAC' 10,MOPEC071).

Trapezoidal modulation — The shunt impedance is increased by 60% at ATLAS (PRST, 15,110101,2012)

Physics design of SC section

	Unit	QWR008	HWR019
f	MHz	81.25	162.5
Vmax	MV	2.0	2.5
Ер	MV/m	32	32
Q0	E+09	8.00	5.00
M/C		8/8&4/7&3/8	3/8
CM	m/number	7/4	7/5
	M:magnet C:cavity CM:croymodule		

Institute of Modern Physics

Lattice design

- TraceWin program is used for beam dynamics
- Beam current is 1mA, and the initial beam energy is 1MeV/u
- Solenoid is 3D field ,cavity is 1D field
- Using Gaussian distribution
 - 6d Gaussian with100000 macroparticles for the entrance.
 - Normalized rms emittance in x/y/z: 0.2π.mm.mrad /
 - 0.2π .mm.mrad / 0.13π .mm.mrad.

Lattice design

近代物理研究所

Lattice design

Multiparticle simulation

- A new proposal for iLinac of HIAF is presented
- A new RFQ with 1MeV/u are proposed, and the preliminary results of beam dynamics design is presented, and the further optimization is on the way
 - The preliminary beam dynamics design of SC section with QWR and HWR cavity was carried out which has good beam quality.
 - More work will be done for the physics design based on the actual engineering

Thanks for your attention!