Halo formation of the gaussian density beam in periodic solenoidal focusing field

61th ICFA Advanced Beam Dynamics Workshop on High-intensity and High-brightness Hadron beams (HB 2018)

In Daejeon

Yoolim Cheon and Moses Chung,
Intense Beam and Accelerator Laboratory (IBAL),
Ulsan National Institute of Science and Technology (UNIST)

Contents

$>$ High-intensity charged-particle beam in a periodic solenoidal focusing field

- Beam physics applications
- Nonlinear resonances and chaotic motions of envelope oscillation
> Halo formation of transverse particle-core model
- Halo formations
- Uniform density charged particle motions
- Gaussian density charged particle motions of matched beam
$>$ Summary

High-intensity charged-particle beam physics
Applications

High-intensity charged-particle beam physics

High-intensity charged-particle beam physics

Applications

astrophysical nuclear reactions carrying the nucleosynthetic processes and nuclear properties

High-intensity charged-particle beam physics

Applications

astrophysical nuclear reactions carrying the nucleosynthetic processes and nuclear properties

High-intensity charged-particle beam physics

Applications

astrophysical nuclear reactions carrying the nucleosynthetic processes and nuclear properties

high energy particle physics

High-intensity charged-particle beam physics

Applications

astrophysical nuclear reactions carrying the nucleosynthetic processes and nuclear properties

high energy particle physics

High-intensity charged-particle beam physics

Applications

astrophysical nuclear reactions carrying the nucleosynthetic processes and nuclear properties

high energy particle physics

nuclear waste transmutation

High-intensity charged-particle beam physics

Applications

astrophysical nuclear reactions carrying the nucleosynthetic processes and nuclear properties

high energy particle physics

nuclear waste transmutation

High-intensity charged-particle beam physics

Applications

astrophysical nuclear reactions carrying the nucleosynthetic processes and nuclear properties

high energy particle physics
fusion material test (IFMIF)

nuclear waste transmutation

High-intensity charged-particle beam physics

High-intensity charged-particle beam physics
Periodic solenoidal focusing field

High-intensity charged-particle beam physics
Periodic solenoidal focusing field

- Periodic solenoidal focusing field

High-intensity charged-particle beam physics

Periodic solenoidal focusing field

- Periodic solenoidal focusing field

$$
\kappa_{z}(s)=\kappa_{Z}(s+S)=\left(\frac{B_{Z 0}(s)}{2[B \rho]}\right)^{2}=\left(\frac{\omega_{c}(s)}{2 \gamma_{b} \beta_{b} c}\right)^{2}
$$

High-intensity charged-particle beam physics

Periodic solenoidal focusing field

- Periodic solenoidal focusing field

$$
\kappa_{z}(s)=\kappa_{z}(s+S)=\left(\frac{B_{Z 0}(s)}{2[B \rho]}\right)^{2}=\left(\frac{\omega_{c}(s)}{2 \gamma_{b} \beta_{b} c}\right)^{2}
$$

High-intensity charged-particle beam physics

Periodic solenoidal focusing field

- Periodic solenoidal focusing field

$$
\kappa_{z}(s)=\kappa_{z}(s+S)=\left(\frac{B_{Z 0}(s)}{2[B \rho]}\right)^{2}=\left(\frac{\omega_{c}(s)}{2 \gamma_{b} \beta_{b} c}\right)^{2}
$$

- The dynamics of the charged particle is easily analyzed in the Larmour frame, which rotates with the Larmour frequency around the axis of the solenoid
- Much simpler and cheaper
- Rotationally symmetric
- For a given beam emittance, the solenoid aperture required is smaller than that of the quadrupole

High-intensity charged-particle beam physics

Periodic solenoidal focusing field

- Periodic solenoidal focusing field

$$
\kappa_{z}(s)=\kappa_{z}(s+S)=\left(\frac{B_{Z 0}(s)}{2[B \rho]}\right)^{2}=\left(\frac{\omega_{c}(s)}{2 \gamma_{b} \beta_{b} c}\right)^{2}
$$

- The dynamics of the charged particle is easily analyzed in the Larmour frame, which rotates with the Larmour frequency around the axis of the solenoid
- Much simpler and cheaper
- Rotationally symmetric
- For a given beam emittance, the solenoid aperture required is smaller than that of the quadrupole
- Normalized envelope equation
> Introduce the dimensionless parameters and variables,

$$
\frac{s}{S} \rightarrow s, \quad \frac{r_{b}}{\sqrt{\epsilon S}} \rightarrow r_{b}, \quad S^{2} \kappa_{z} \rightarrow \kappa_{z}, \quad \frac{S K}{\epsilon} \rightarrow K
$$

$>$ With symmetric envelope radius, $r_{x}(s)=r_{y}(s) \equiv r_{b}(s)$
> The normalized envelope equation

$$
r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0
$$

$>$ Space charge defocusing; $K \equiv \frac{2 q \lambda}{\gamma_{b}{ }^{3} \beta_{b}{ }^{2} m c^{2}}$: Perveance
$>\sigma_{0} \equiv \int_{0}^{1} \sqrt{\kappa_{z}(s)} d s=\int_{0}^{1} \sqrt{\eta \kappa_{z}(0)} d s=\sqrt{\eta \kappa_{z}(0)}$
: undepressed (vacuum) phase advance
$>\sigma \equiv \int_{0}^{1} \frac{d s}{r_{b}^{2}(s)}:$ depressed phase advance

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}{ }^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{Z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{Z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{Z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}{ }^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)

$$
r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0
$$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{Z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{Z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{Z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

Matched beam in solenoidal focusing (equilibrium envelope radius)

$$
r_{b}(s)=r_{b}(s+S)=\text { const }
$$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

Matched beam in solenoidal focusing
(equilibrium envelope radius)

$$
r_{b}(s)=r_{b}(s+S)=\text { const }
$$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{Z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{Z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

Matched beam in solenoidal focusing
(equilibrium envelope radius)

$$
r_{b}(s)=r_{b}(s+S)=\text { const }
$$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{Z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

Matched beam in solenoidal focusing
(equilibrium envelope radius)

$$
r_{b}(s)=r_{b}(s+S)=\text { const }
$$

Mismatched beam in solenoidal focusing

$$
r(s)=r_{b}(s ; \text { matched })+\boldsymbol{\delta r}
$$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

rb

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

n-th order resonance

$$
r(s)=r_{b}(s ; \text { matched })+\delta r, \delta r(s)=\delta r(0) \boldsymbol{c o s}\left(\boldsymbol{k}_{\boldsymbol{n}} \boldsymbol{s}\right)
$$

rb

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}{ }^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}{ }^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

n-th order resonance

$$
r(s)=r_{b}(s ; \text { matched })+\delta r, \delta r(s)=\delta r(0) \boldsymbol{c o s}\left(\boldsymbol{k}_{\boldsymbol{n}} \boldsymbol{s}\right)
$$

rb

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

* 4-th

$$
r(s)=r_{b}(s ; \text { matched })+\delta r, \delta r(s)=\delta r(0) \boldsymbol{c o s}\left(\boldsymbol{k}_{\boldsymbol{n}} \boldsymbol{s}\right)
$$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

rb
, 4-th

$$
r(s)=r_{b}(s ; \text { matched })+\delta r, \delta r(s)=\delta r(0) \boldsymbol{\operatorname { c o s }}\left(\boldsymbol{k}_{\boldsymbol{n}} \boldsymbol{s}\right)
$$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

rb

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)

$$
r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0
$$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{Z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{Z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{Z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

n-th order resonance

$$
r(s)=r_{b}(s ; \text { matched })+\delta r, \delta r(s)=\delta r(0) \boldsymbol{c o s}\left(\boldsymbol{k}_{\boldsymbol{n}} \boldsymbol{s}\right)
$$

$$
\mathrm{n}=5 ; 5 \text {-th order resonance } \mathrm{k}=k_{5}=\frac{2 \pi l}{5}
$$

$$
\text { if } s=5,10,15, \ldots,
$$

the perturbed radius comes back its starting point ${ }^{37}$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{\boldsymbol{z}}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{\boldsymbol{z}}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{\boldsymbol{z}}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods

Envelope oscillations

(phase plane $r_{b}-r_{b}{ }^{\prime}$)
$r_{b}^{\prime \prime}(s)+\kappa_{z}(s) r_{b}(s)-\frac{K}{r_{b}(s)}-\frac{1}{r_{b}^{3}(s)}=0$

Space charge perveance (\boldsymbol{K})	Focusing field parameter	Vacuum phase advance $\left(\sigma_{0}\right)$	Matched beam initial condition
0	$\kappa_{z}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.16, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
3	$\kappa_{\boldsymbol{z}}(0)=3.79, \eta=\frac{1}{6}$	45.5°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=2.3, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$
5	$\kappa_{z}(0)=24.2, \eta=\frac{1}{6}$	115°	$\boldsymbol{r}_{\boldsymbol{b}}(0)=1.4, \boldsymbol{r}_{\boldsymbol{b}}^{\prime}(0)=0$

rb

Contents

> High-intensity charged-particle beam in a periodic solenoidal focusing field

- Beam physics applications
- Nonlinear resonances and chaotic motions of envelope oscillation
> Halo formation of transverse particle-core model
- Halo formations
- Uniform density charged particle motions
- Gaussian density charged particle motions of matched beam
> Summary

Halo formation of transverse particle-core model
Halo formations of particles along the linac

Halo formation of transverse particle-core model
Halo formations of particles along the linac

Halo formation of transverse particle-core model
Halo formations of particles along the linac
Beam emittance growth and particle losses in accelerators

Halo formation of transverse particle-core model
Halo formations of particles along the linac
Beam emittance growth and particle losses in accelerators

Halo formation of transverse particle-core model
Halo formations of particles along the linac
Beam emittance growth and particle losses in accelerators \longrightarrow Radioactivation

Halo formation of transverse particle-core model
Halo formations of particles along the linac
Beam emittance growth and particle losses in accelerators \longrightarrow Radioactivation

- Uniform charge density

Halo formation of transverse particle-core model

Halo formations of particles along the linac

\rightarrow Beam emittance growth and particle losses in accelerators \longrightarrow Radioactivation

- Uniform charge density

Envelope	Matched	Beam core oscillates periodically in every lattice period	
	Mis-matched	Beam core oscillates because of initial mismatch $\&$	Envelope oscillation
	Space charge effect	Particle frequency	

Halo formation of transverse particle-core model

Halo formations of particles along the linac

\rightarrow Beam emittance growth and particle losses in accelerators \longrightarrow Radioactivation

- Uniform charge density

Envelope	Matched	Beam core oscillates periodically in every lattice period	
	Mis-matched	Beam core oscillates because of initial mismatch $\&$	Envelope oscillation
	Space charge effect	Resonance	
	n-th order resonance	Particle frequency	

Halo formation of transverse particle-core model

Halo formations of particles along the linac

\rightarrow Beam emittance growth and particle losses in accelerators \longrightarrow Radioactivation

- Uniform charge density

Envelope	Matched	Beam core oscillates periodically in every lattice period	
	Mis-matched	Beam core oscillates because of initial mismatch $\&$	Envelope oscillation
	n-th order resonance	Space charge effect	Resonance
	Particle frequency		

- Non-uniform charge density (Gaussian)

Halo formation of transverse particle-core model

Halo formations of particles along the linac

\rightarrow Beam emittance growth and particle losses in accelerators \longrightarrow Radioactivation

- Uniform charge density

Envelope	Matched	Beam core oscillates periodically in every lattice period	
	Mis-matched	Beam core oscillates because of initial mismatch $\&$	Envelope oscillation
	n-th order resonance	Space charge effect	Resonance
	Particle frequency		

- Non-uniform charge density (Gaussian)

Envelope	Matched	Gaussian density profile	Non-linear space charge force

Halo formation of transverse particle-core model

Halo formations of particles along the linac

\longrightarrow Beam emittance growth and particle losses in accelerators \longrightarrow Radioactivation

- External : periodic solenoidal magnetic focusing field
- Uniform charge density

Envelope	Matched	Beam core oscillates periodically in every lattice period	
	Mis-matched	Beam core oscillates because of initial mismatch $\&$	Envelope oscillation
	n-th order resonance	Space charge effect	Resonance
	Particle frequency		

- Non-uniform charge density (Gaussian)

Envelope	Matched	Gaussian density profile	Non-linear space charge force

Halo formation of transverse particle-core model
Uniform density charged particle motions

Halo formation of transverse particle-core model
Uniform density charged particle motions
Equation of motion (Larmor frame)

Halo formation of transverse particle-core model
Uniform density charged particle motions
Equation of motion (Larmor frame)
$\boldsymbol{x}^{\prime \prime}(\boldsymbol{s})+\boldsymbol{\kappa}_{\boldsymbol{z}}(\boldsymbol{s}) \boldsymbol{x}(\boldsymbol{s})-\boldsymbol{K} \boldsymbol{F}\left(\boldsymbol{x}, \boldsymbol{r}_{\boldsymbol{b}}\right)=\mathbf{0}$
$F\left(x, r_{b}\right)=\frac{x(s)}{r_{b}^{2}(s)}$ for $x(s)<r_{b}(s), \frac{1}{x(s)}$ for $x(s)>r_{b}(s)$

Halo formation of transverse particle-core model
Uniform density charged particle motions
Equation of motion (Larmor frame)
(phase plane $\mathrm{x} / r_{b}-x^{\prime}$)
$\boldsymbol{x}^{\prime \prime}(\boldsymbol{s})+\boldsymbol{\kappa}_{\boldsymbol{z}}(\boldsymbol{s}) \boldsymbol{x}(\boldsymbol{s})-\boldsymbol{K} \boldsymbol{F}\left(\boldsymbol{x}, \boldsymbol{r}_{\boldsymbol{b}}\right)=\mathbf{0}$
$F\left(x, r_{b}\right)=\frac{x(s)}{r_{b}^{2}(s)}$ for $x(s)<r_{b}(s), \quad \frac{1}{x(s)}$ for $x(s)>r_{b}(s)$

Halo formation of transverse particle-core model
Uniform density charged particle motions

$$
\begin{gathered}
\text { Equation of motion (Larmor frame) } \\
\text { (phase plane } \left.\mathrm{x} / r_{b}-x^{\prime}\right) \\
\boldsymbol{x}^{\prime \prime}(\boldsymbol{s})+\boldsymbol{\kappa}_{\boldsymbol{Z}}(\boldsymbol{s}) \boldsymbol{x}(\boldsymbol{s})-\boldsymbol{K} \boldsymbol{F}\left(\boldsymbol{x}, \boldsymbol{r}_{\boldsymbol{b}}\right)=\mathbf{0} \\
F\left(x, r_{b}\right)=\frac{x(s)}{r_{b}^{2}(s)} \text { for } x(s)<r_{b}(s), \frac{1}{x(s)} \text { for } x(s)>r_{b}(s)
\end{gathered}
$$

All points are plotted in every S lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods

Halo formation of transverse particle-core model

Uniform density charged particle motions

All points are plotted in every S lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods

Equation of motion (Larmor frame)
(phase plane $\mathrm{x} / r_{b}-x^{\prime}$)
$\boldsymbol{x}^{\prime \prime}(\boldsymbol{s})+\boldsymbol{\kappa}_{\boldsymbol{z}}(\boldsymbol{s}) \boldsymbol{x}(\boldsymbol{s})-\boldsymbol{K} \boldsymbol{F}\left(\boldsymbol{x}, \boldsymbol{r}_{\boldsymbol{b}}\right)=\mathbf{0}$
$F\left(x, r_{b}\right)=\frac{x(s)}{r_{b}{ }^{2}(s)}$ for $x(s)<r_{b}(s), \frac{1}{x(s)}$ for $x(s)>r_{b}(s)$
Matched core - test particles

$\sigma_{0}=45.5^{\circ}$

$$
\sigma_{0}=45.5^{\circ}
$$

Halo formation of transverse particle-core model

Uniform density charged particle motions

All points are plotted in every S lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods

Equation of motion (Larmor frame)
(phase plane $\mathrm{x} / r_{b}-x^{\prime}$)

$$
x^{\prime \prime}(s)+\kappa_{z}(s) x(s)-K F\left(x, r_{b}\right)=0
$$

$$
F\left(x, r_{b}\right)=\frac{x(s)}{r_{b}^{2}(s)} \text { for } x(s)<r_{b}(s), \frac{1}{x(s)} \text { for } x(s)>r_{b}(s)
$$

Matched core - test particles

$\sigma_{0}=45.5^{\circ}$

$\sigma_{0}=45.5^{\circ}$

Mismatched core

- test particles

$$
\begin{gathered}
K=3 \\
\sigma_{0}=45.5^{\circ}
\end{gathered}
$$

Halo formation of transverse particle-core model

Uniform density charged particle motions

All points are plotted in every S lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods

Equation of motion (Larmor frame)
(phase plane $\mathrm{x} / r_{b}-x^{\prime}$)

$$
x^{\prime \prime}(s)+\kappa_{z}(s) x(s)-K F\left(x, r_{b}\right)=0
$$

$$
F\left(x, r_{b}\right)=\frac{x(s)}{r_{b}^{2}(s)} \text { for } x(s)<r_{b}(s), \quad \frac{1}{x(s)} \text { for } x(s)>r_{b}(s)
$$

Matched core - test particles

$\sigma_{0}=45.5^{\circ}$

Mismatched core

- test particles

$$
\begin{gathered}
K=3 \\
\sigma_{0}=45.5^{\circ}
\end{gathered}
$$

$5^{\text {th }}$ resonance core

- test particles
(plot in every 5 period)

Halo formation of transverse particle-core model
Gaussian density charged particle motions of matched beam

Halo formation of transverse particle-core model
Gaussian density charged particle motions of matched beam
Space charge field of gaussian density particles

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Space charge field of gaussian density particles

For Gaussian charge density,

$$
\rho(\mathrm{x})=\frac{\lambda}{2 \pi \sigma_{x} \sigma_{y}} \exp \left(-\frac{x^{2}}{2 \sigma_{x}^{2}}-\frac{y^{2}}{2 \sigma_{y}^{2}}\right)
$$

$$
\begin{gathered}
\boldsymbol{E}_{s c, x}(\boldsymbol{x}, \boldsymbol{y})=2 \lambda \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} \boldsymbol{x}, \quad \boldsymbol{E}_{s c, y}(\boldsymbol{x}, \boldsymbol{y})=2 \lambda \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} \boldsymbol{y} \\
r^{2}=x^{2}+y^{2}
\end{gathered}
$$

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Space charge field of gaussian density particles

For Gaussian charge density,
$\rho(\mathrm{x})=\frac{\lambda}{2 \pi \sigma_{x} \sigma_{y}} \exp \left(-\frac{x^{2}}{2 \sigma_{x}^{2}}-\frac{y^{2}}{2 \sigma_{y}^{2}}\right)$

$$
\begin{gathered}
\boldsymbol{E}_{s c, x}(\boldsymbol{x}, \boldsymbol{y})=\mathbf{2 \lambda} \frac{\mathbf{1}-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} \boldsymbol{x}, \quad \boldsymbol{E}_{s c, y}(\boldsymbol{x}, \boldsymbol{y})=\mathbf{2} \lambda \frac{\mathbf{1}-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} \boldsymbol{y} \\
r^{2}=x^{2}+y^{2}
\end{gathered}
$$

For symmetric case, $\sigma_{\mathrm{r}}=\sqrt{2} \sigma_{\mathrm{x}}=\sqrt{2} \sigma_{\mathrm{y}}$

$$
\rho(r)=\frac{\lambda}{\pi \sigma_{\mathrm{r}}^{2}} \exp \left(-\frac{\mathrm{r}^{2}}{\sigma_{\mathrm{r}}^{2}}\right)
$$

$$
E_{s c, r}(r)=2 \lambda \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r}
$$

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Space charge field of gaussian density particles

For Gaussian charge density,
$\rho(\mathrm{x})=\frac{\lambda}{2 \pi \sigma_{x} \sigma_{y}} \exp \left(-\frac{x^{2}}{2 \sigma_{x}^{2}}-\frac{y^{2}}{2 \sigma_{y}^{2}}\right)$

$$
\begin{gathered}
\boldsymbol{E}_{s c, x}(x, y)=2 \lambda \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} \boldsymbol{x}, \quad \boldsymbol{E}_{s c, y}(x, y)=2 \lambda \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} \boldsymbol{y} \\
r^{2}=x^{2}+y^{2}
\end{gathered}
$$

For symmetric case, $\sigma_{\mathrm{r}}=\sqrt{2} \sigma_{\mathrm{x}}=\sqrt{2} \sigma_{\mathrm{y}}$

$$
\begin{array}{lc}
\rho(r)=\frac{\lambda}{\pi \sigma_{\mathrm{r}}^{2}} \exp \left(-\frac{\mathrm{r}^{2}}{\sigma_{\mathrm{r}}^{2}}\right) & \begin{array}{c}
\sigma_{r}(s)=\mathrm{r}_{\mathrm{b}} / \sqrt{2} \\
\text { (equivalent beams) }
\end{array} \\
E_{s c, r}(r)=2 \lambda \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r} &
\end{array}
$$

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Space charge field of gaussian density particles

For Gaussian charge density,
Equation of motion (real frame)

$$
\rho(\mathrm{x})=\frac{\lambda}{2 \pi \sigma_{x} \sigma_{y}} \exp \left(-\frac{x^{2}}{2 \sigma_{x}^{2}}-\frac{y^{2}}{2 \sigma_{y}^{2}}\right)
$$

$$
\begin{gathered}
\boldsymbol{E}_{s c, x}(\boldsymbol{x}, \boldsymbol{y})=2 \lambda \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} \boldsymbol{x}, \quad \boldsymbol{E}_{s c, y}(\boldsymbol{x}, \boldsymbol{y})=2 \lambda \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} \boldsymbol{y} \\
r^{2}=x^{2}+y^{2}
\end{gathered}
$$

Coupled equation of motion

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
x^{\prime \prime}(s)-2 \sqrt{\kappa_{z}(s)} y^{\prime}(s)-\frac{K}{2} F_{s c, x}(x, y)=0 \\
y^{\prime \prime}(s)+2 \sqrt{\kappa_{z}(s)} x^{\prime}(s)-\frac{K}{2} F_{s c, y}(x, y)=0
\end{array}\right.
\end{array} \begin{array}{l}
F_{s c, x}(x, y)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} x \\
F_{s c, y}(x, y)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} y
\end{array}\right\}
$$

For symmetric case, $\sigma_{\mathrm{r}}=\sqrt{2} \sigma_{\mathrm{x}}=\sqrt{2} \sigma_{\mathrm{y}}$

$$
\rho(r)=\frac{\lambda}{\pi \sigma_{\mathrm{r}}^{2}} \exp \left(-\frac{\mathrm{r}^{2}}{\sigma_{\mathrm{r}}^{2}}\right)
$$

$$
\sigma_{r}(s)=\mathrm{r}_{\mathrm{b}} / \sqrt{2}
$$

(equivalent beams)

$$
E_{s c, r}(r)=2 \lambda \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r}
$$

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Space charge field of gaussian density particles

Equation of motion (real frame)
For Gaussian charge density,
Coupled equation of motion

$$
\rho(\mathrm{x})=\frac{\lambda}{2 \pi \sigma_{x} \sigma_{y}} \exp \left(-\frac{x^{2}}{2 \sigma_{x}^{2}}-\frac{y^{2}}{2 \sigma_{y}^{2}}\right)
$$

$$
\begin{gathered}
\boldsymbol{E}_{s c, x}(\boldsymbol{x}, \boldsymbol{y})=2 \lambda \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} \boldsymbol{x}, \quad \boldsymbol{E}_{s c, y}(\boldsymbol{x}, \boldsymbol{y})=2 \lambda \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} \boldsymbol{y} \\
r^{2}=x^{2}+y^{2}
\end{gathered}
$$

$$
\left\{\begin{array}{ll}
x^{\prime \prime}(s)-2 \sqrt{\kappa_{z}(s)} y^{\prime}(s)-\frac{K}{2} F_{s c, x}(x, y)=0 \\
y^{\prime \prime}(s)+2 \sqrt{\kappa_{z}(s)} x^{\prime}(s)-\frac{K}{2} F_{s c, y}(x, y)=0
\end{array} \quad \begin{array}{l}
F_{s c, x}(x, y)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} x \\
F_{s c, y}(x, y)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} y
\end{array}\right.
$$

$$
\text { When } p_{\theta} \neq 0, \quad \gamma^{\prime}=\gamma^{\prime \prime}=0
$$

For symmetric case, $\sigma_{\mathrm{r}}=\sqrt{2} \sigma_{\mathrm{x}}=\sqrt{2} \sigma_{\mathrm{y}}$

$$
\rho(r)=\frac{\lambda}{\pi \sigma_{\mathrm{r}}^{2}} \exp \left(-\frac{\mathrm{r}^{2}}{\sigma_{\mathrm{r}}^{2}}\right)
$$

$$
\sigma_{r}(s)=\mathrm{r}_{\mathrm{b}} / \sqrt{2}
$$

(equivalent beams)

$$
E_{s c, r}(r)=2 \lambda \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r}
$$

Radial equation of motion

 (real frame)$$
r^{\prime \prime}(s)+\kappa_{z}(s) r(s)-\frac{K}{2} F_{s c}(r)=0
$$

$$
F_{s c}(r)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r}
$$

$$
\text { When } p_{\theta}=0 ; y=y^{\prime}=0, \quad \gamma^{\prime}=\gamma^{\prime \prime}=0
$$

Halo formation of transverse particle-core model

All points are plotted in every S lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods

Transverse particle motions (real frame)
Radial equation of motion
(phase plane $r / r_{b}-r^{\prime}$)
$r^{\prime \prime}(s)+\kappa_{z}(s) r(s)-\frac{K}{2} F_{s c}(r)=0 \quad F_{s c}(r)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r}$

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)
Radial equation of motion
(phase plane $r / r_{b}-r^{\prime}$)

$$
r^{\prime \prime}(s)+\kappa_{z}(s) r(s)-\frac{K}{2} F_{s c}(r)=0 \quad F_{s c}(r)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r}
$$

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam
Transverse particle motions (real frame)
Radial equation of motion
(phase plane $r / r_{b}-r^{\prime}$)

$$
\begin{gathered}
\mathrm{K}=0, \sigma_{0}=45.5^{\circ}, \sigma=46^{\circ} \\
\frac{\sigma}{\sigma_{0}}=1
\end{gathered}
$$

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)
Radial equation of motion
(phase plane $\mathrm{r} / r_{b}-\mathrm{r}^{\prime}$)

$$
r^{\prime \prime}(s)+\kappa_{z}(s) r(s)-\frac{K}{2} F_{s c}(r)=0
$$

$$
F_{s c}(r)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r}
$$

$$
\begin{gathered}
\mathrm{K}=0, \sigma_{0}=45.5^{\circ}, \sigma=46^{\circ} \\
\frac{\sigma}{\sigma_{0}}=1
\end{gathered}
$$

All nninte ara ninttad in awame Clattira

$$
\frac{\sigma}{\sigma_{0}}=0.78
$$

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam
Transverse particle motions (real frame)
Radial equation of motion
$r^{\prime \prime}(s)+\kappa_{z}(s) r(s)-\frac{K}{2} F_{s c}(r)=0$
$F_{s c}(r)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r}$

$$
\mathrm{K}=2.3, \sigma_{0}=115^{\circ}, \boldsymbol{\sigma}=\mathbf{9 0}^{\circ}
$$

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam
Transverse particle motions (real frame)
Radial equation of motion
$r^{\prime \prime}(s)+\kappa_{z}(s) r(s)-\frac{K}{2} F_{s c}(r)=0$
$F_{s c}(r)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r} \longrightarrow e^{-r^{2} / \boldsymbol{\sigma}_{r}^{2}}=\sum_{n=0}^{\infty} \frac{\mathbf{1}}{\boldsymbol{n}!}\left(-\frac{r^{2}}{\boldsymbol{\sigma}_{r}^{2}}\right)^{n}$

$$
\mathrm{K}=2.3, \sigma_{0}=115^{\circ}, \boldsymbol{\sigma}=\mathbf{9 0}^{\circ}
$$

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam
Transverse particle motions (real frame)

Radial equation of motion
$r^{\prime \prime}(s)+\kappa_{z}(s) r(s)-\frac{K}{2} F_{s c}(r)=0$
$F_{s c}(r)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r} \longrightarrow e^{-r^{2} / \boldsymbol{\sigma}_{r}^{2}}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{r^{2}}{\sigma_{r}^{2}}\right)^{n}$

$$
\mathrm{K}=2.3, \sigma_{0}=115^{\circ}, \boldsymbol{\sigma}=\mathbf{9 0}^{\circ}
$$

With $\mathrm{n} \leq 2 ; \mathrm{n}=1$ (linear), $\mathrm{n}=2$ (2 ${ }^{\text {nd }}$ order) $\rightarrow r^{\prime \prime}(s)+\sigma_{\perp}{ }^{2} r(s) \sim r^{3} \cdot e^{i \sigma_{e n v} s} ; r \sim e^{ \pm i \sigma_{\perp} s}$

Resonance condition $>$
$\rightarrow \sigma_{\text {env }}=4 \sigma_{\perp} ; \sigma_{\text {env }}=360^{\circ}$ (matched beam)
$\rightarrow \sigma_{\perp}=90^{\circ}: 4^{\text {th }}$ order resonance

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam
Transverse particle motions (real frame)

Radial equation of motion
$r^{\prime \prime}(s)+\kappa_{z}(s) r(s)-\frac{K}{2} F_{s c}(r)=0$
$F_{s c}(r)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r} \quad e^{-r^{2} / \boldsymbol{\sigma}_{r}^{2}}=\sum_{n=\mathbf{0}}^{\infty} \frac{\mathbf{1}}{\boldsymbol{n}!}\left(-\frac{r^{2}}{\boldsymbol{\sigma}_{\boldsymbol{r}}^{2}}\right)^{n}$

$$
\mathrm{K}=2.3, \sigma_{0}=115^{\circ}, \boldsymbol{\sigma}=\mathbf{9 0}^{\circ}
$$

With $\mathrm{n} \leq 2 ; \mathrm{n}=1$ (linear), $\mathrm{n}=2$ (2 ${ }^{\text {nd }}$ order) $->r^{\prime \prime}(s)+\sigma_{\perp}{ }^{2} r(s) \sim r^{3} \cdot e^{i \sigma_{e n v} s} ; r \sim e^{ \pm i \sigma_{\perp} s}$
<Resonance condition $>$
$->\sigma_{e n v}=4 \sigma_{\perp} ; \sigma_{e n v}=360^{\circ}$ (matched beam)
$\rightarrow \sigma_{\perp}=90^{\circ}: 4^{\text {th }}$ order resonance

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam
Transverse particle motions (real frame)

Radial equation of motion
$r^{\prime \prime}(s)+\kappa_{z}(s) r(s)-\frac{K}{2} F_{s c}(r)=0$
$F_{s c}(r)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r} \longrightarrow e^{-r^{2} / \boldsymbol{\sigma}_{r}^{2}}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{r^{2}}{\sigma_{r}^{2}}\right)^{n}$

$$
\mathrm{K}=2.3, \sigma_{0}=115^{\circ}, \boldsymbol{\sigma}=\mathbf{9 0}^{\circ}
$$

With $\mathrm{n} \leq 2 ; \mathrm{n}=1$ (linear), $\mathrm{n}=2$ (2 ${ }^{\text {nd }}$ order) $->r^{\prime \prime}(s)+\sigma_{\perp}{ }^{2} r(s) \sim r^{3} \cdot e^{i \sigma_{e n v} s} ; r \sim e^{ \pm i \sigma_{\perp} s}$

```
-> 郚}{}{= 4}\mp@subsup{\sigma}{\perp}{};\mp@subsup{\sigma}{\mathrm{ env }}{}=36\mp@subsup{0}{}{\circ}\mathrm{ (matched beam)}
```

$\rightarrow \sigma_{\perp}=90^{\circ}: 4^{\text {th }}$ order resonance

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Radial equation of motion

$$
r^{\prime \prime}(s)+\kappa_{z}(s) r(s)-\frac{K}{2} F_{s c}(r)=0
$$

$$
F_{s c}(r)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r} \quad \boldsymbol{e}^{-r^{2} / \boldsymbol{\sigma}_{r}^{2}}=\sum_{n=\mathbf{0}}^{\infty} \frac{\mathbf{1}}{\boldsymbol{n}!}\left(-\frac{\boldsymbol{r}^{2}}{\boldsymbol{\sigma}_{r}^{2}}\right)^{\boldsymbol{n}}
$$

$$
\mathrm{K}=2.3, \sigma_{0}=115^{\circ}, \boldsymbol{\sigma}=\mathbf{9 0}^{\circ}
$$

With $\mathrm{n} \leq 2 ; \mathrm{n}=1$ (linear), $\mathrm{n}=2$ (2 $2^{\text {nd }}$ order) $->r^{\prime \prime}(s)+\sigma_{\perp}{ }^{2} r(s) \sim r^{3} \cdot e^{i \sigma_{e n v} s} ; r \sim e^{ \pm i \sigma_{\perp} s}$
< Resonance condition $>$
$->\sigma_{\text {env }}=4 \sigma_{\perp} ; \sigma_{\text {env }}=360^{\circ}$ (matched beam)
$->\sigma_{\perp}=90^{\circ}: 4^{t h}$ order resonance

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Radial equation of motion

$$
r^{\prime \prime}(s)+\kappa_{z}(s) r(s)-\frac{K}{2} F_{s c}(r)=0
$$

$$
F_{s c}(r)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r} \longrightarrow e^{-\boldsymbol{r}^{2} / \boldsymbol{\sigma}_{r}^{2}}=\sum_{n=0}^{\infty} \frac{\mathbf{1}}{\boldsymbol{n}!}\left(-\frac{\boldsymbol{r}^{2}}{\boldsymbol{\sigma}_{\boldsymbol{r}}^{2}}\right)^{n}
$$

$$
\mathrm{K}=2.3, \sigma_{0}=115^{\circ}, \boldsymbol{\sigma}=\mathbf{9 0}^{\circ}
$$

With $\mathrm{n} \leq 2 ; \mathrm{n}=1$ (linear), $\mathrm{n}=2$ (2 $2^{\text {nd }}$ order) $->r^{\prime \prime}(s)+\sigma_{\perp}{ }^{2} r(s) \sim r^{3} \cdot e^{i \sigma_{e n v} s} ; r \sim e^{ \pm i \sigma_{\perp} s}$
<Resonance condition $>$
$->\sigma_{e n v}=4 \sigma_{\perp} ; \sigma_{e n v}=360^{\circ}$ (matched beam) $\rightarrow \sigma_{\perp}=90^{\circ}: 4^{\text {th }}$ order resonance

Halo formation of transverse particle-core model

All points are plotted in every S lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods
Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Coupled equation of motion

$$
\left\{\begin{array}{l}
x^{\prime \prime}(s)-2 \sqrt{\kappa_{z}(s)} y^{\prime}(s)-\frac{K}{2} F_{s c, x}(x, y)=0 \\
y^{\prime \prime}(s)+2 \sqrt{\kappa_{z}(s)} x^{\prime}(s)-\frac{K}{2} F_{s c, y}(x, y)=0
\end{array}\right.
$$

$$
F_{s c, x}(x, y)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} x
$$

$$
F_{s c, y}(x, y)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} y
$$

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

All points are plotted in every S lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods

Transverse particle motions (real frame)

Coupled equation of motion

$$
\left\{\begin{array}{l}
x^{\prime \prime}(s)-2 \sqrt{\kappa_{z}(s)} y^{\prime}(s)-\frac{K}{2} F_{s c, x}(x, y)=0 \\
y^{\prime \prime}(s)+2 \sqrt{\kappa_{z}(s)} x^{\prime}(s)-\frac{K}{2} F_{s c, y}(x, y)=0
\end{array}\right.
$$

$$
F_{s c, x}(x, y)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} x
$$

$$
F_{s c, y}(x, y)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} y
$$

Many test particles with different initial conditions

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

All points are plotted in every S lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods

Transverse particle motions (real frame)

Coupled equation of motion

$$
\left\{\begin{array}{l}
x^{\prime \prime}(s)-2 \sqrt{\kappa_{z}(s)} y^{\prime}(s)-\frac{K}{2} F_{s c, x}(x, y)=0 \\
y^{\prime \prime}(s)+2 \sqrt{\kappa_{z}(s)} x^{\prime}(s)-\frac{K}{2} F_{s c, y}(x, y)=0
\end{array}\right.
$$

$$
F_{s c, x}(x, y)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} x
$$

$$
F_{s c, y}(x, y)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} y
$$

Many test particles with different initial conditions

(phase plane $\mathrm{x} / r_{b}-\mathrm{x}^{\prime}, \mathrm{y} / r_{b}-\mathrm{y}^{\prime}, \mathrm{x} / r_{b}-\mathrm{y} / r_{b}$)

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

All points are plotted in every S lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods

Transverse particle motions (real frame)

Coupled equation of motion

$$
\left\{\begin{array}{l}
x^{\prime \prime}(s)-2 \sqrt{\kappa_{z}(s)} y^{\prime}(s)-\frac{K}{2} F_{s c, x}(x, y)=0 \\
y^{\prime \prime}(s)+2 \sqrt{\kappa_{z}(s)} x^{\prime}(s)-\frac{K}{2} F_{s c, y}(x, y)=0
\end{array}\right.
$$

$$
\begin{aligned}
& F_{s c, x}(x, y)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} x \\
& F_{s c, y}(x, y)=2 \frac{1-e^{-r^{2} / \sigma_{r}^{2}}}{r^{2}} y
\end{aligned}
$$

Many test particles with different initial conditions
(phase plane $\mathrm{x} / r_{b}-\mathrm{x}^{\prime}, \mathrm{y} / r_{b}-\mathrm{y}^{\prime}, \mathrm{x} / r_{b}-\mathrm{y} / r_{b}$)

Halo formation of transverse particle-core model
Gaussian density charged particle motions of matched beam
(real frame)

All points are plotted in every S lattice period (Poincare surface of section plots) of a single particle for propagation over 300 lattice periods

Transverse particle motions

(real frame)

Halo formation of transverse particle-core model

All points are plotted in every S lattice period (Poincare surface of section plots) of a single particle for propagation over 300 lattice periods

Transverse particle motions

(real frame)

Single test particle motion
(phase plane $\mathrm{x} / r_{b}-\mathrm{y} / r_{b}$)

$$
\begin{gathered}
\mathrm{K}=2.3, \sigma_{0}=115^{\circ}, \sigma=90^{\circ} \\
\frac{\sigma}{\sigma_{0}}=0.78
\end{gathered}
$$

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

All points are plotted in every S lattice period (Poincare surface of section plots) of a single particle for propagation over 300 lattice periods

Transverse particle motions

(real frame)

initial condition $\left(\frac{x}{r_{b}}\right)^{2}+\left(\frac{y}{r_{b}}\right)^{2}=(0.1)^{2}$

Single test particle motion
(phase plane $\mathrm{x} / r_{b^{-}} \mathrm{y} / r_{b}$)

$$
\begin{gathered}
\mathrm{K}=2.3, \sigma_{0}=115^{\circ}, \sigma=90^{\circ} \\
\frac{\sigma}{\sigma_{0}}=0.78
\end{gathered}
$$

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

All points are plotted in every S lattice period (Poincare surface of section plots) of a single particle for propagation over 300 lattice periods

initial condition $\left(\frac{x}{r_{b}}\right)^{2}+\left(\frac{y}{r_{b}}\right)^{2}=(0.1)^{2}$

Single test particle motion
(phase plane $\mathrm{x} / r_{b}-\mathrm{y} / r_{b}$)

$$
\begin{gathered}
\mathrm{K}=2.3, ~ \sigma_{0}=115^{\circ}, \sigma=90^{\circ} \\
\frac{\sigma}{\sigma_{0}}=0.78
\end{gathered}
$$

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam
All points are plotted in every S lattice period (Poincare surface of section plots) of a single particle for propagation over 300 lattice periods

initial condition $\left(\frac{x}{r_{b}}\right)^{2}+\left(\frac{y}{r_{b}}\right)^{2}=(0.1)^{2}$

Single test particle motion
(phase plane $\mathrm{x} / r_{b}-\mathrm{y} / r_{b}$)

$$
\begin{gathered}
\mathrm{K}=2.3, \sigma_{0}=115^{\circ}, \sigma=90^{\circ} \\
\frac{\sigma}{\sigma_{0}}=0.78
\end{gathered}
$$

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam
All points are plotted in every S lattice period (Poincare surface of section plots) of a single particle for propagation over 300 lattice periods

$$
\text { initial condition }\left(\frac{x}{r_{b}}\right)^{2}+\left(\frac{y}{r_{b}}\right)^{2}=(0.1)^{2}
$$

Single test particle motion (phase plane $\mathrm{x} / r_{b}-\mathrm{y} / r_{b}$)

$$
\begin{gathered}
\mathrm{K}=2.3, \sigma_{0}=115^{\circ}, \sigma=90^{\circ} \\
\frac{\sigma}{\sigma_{0}}=0.78
\end{gathered}
$$ Transverse particle motions

$$
\left(\frac{x}{r_{b}}\right)^{2}+\left(\frac{y}{r_{b}}\right)^{2}=(0.7)^{2}
$$

(real frame)

$$
\left(\frac{x}{r_{b}}\right)^{2}+\left(\frac{y}{r_{b}}\right)^{2}=(1.2)^{2}
$$

Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

All points are plotted in every S lattice period (Poincare surface of section plots) of a single particle for propagation over 300 lattice periods

$$
\text { initial condition }\left(\frac{x}{r_{b}}\right)^{2}+\left(\frac{y}{r_{b}}\right)^{2}=(0.1)^{2}
$$

$$
\left(\frac{x}{r_{b}}\right)^{2}+\left(\frac{y}{r_{b}}\right)^{2}=(0.7)^{2}
$$

Single test particle motion (phase plane $\mathrm{x} / r_{b}-\mathrm{y} / r_{b}$)

$$
\begin{gathered}
\mathrm{K}=2.3, \sigma_{0}=115^{\circ}, \sigma=90^{\circ} \\
\frac{\sigma}{\sigma_{0}}=0.78
\end{gathered}
$$

$$
\left(\frac{x}{r_{b}}\right)^{2}+\left(\frac{y}{r_{b}}\right)^{2}=(1.2)^{2}
$$

$$
\left(\frac{x}{r_{b}}\right)^{2}+\left(\frac{y}{r_{b}}\right)^{2}=(0.9)^{2}
$$

$\left(\frac{x}{r_{b}}\right)^{2}+\left(\frac{y}{r_{b}}\right)^{2}=(2.2)^{2}$

Contents

$>$ High-intensity charged-particle beam in a periodic solenoidal focusing field

- Beam physics applications
- Nonlinear resonances and chaotic motions of envelope oscillation
> Halo formation of transverse particle-core model
- Halo formations
- Uniform density charged particle motions
- Gaussian density charged particle motions of matched beam

Summary

Summary

Summary

- The periodic solenoidal focusing field is important for several reasons.

Summary

- The periodic solenoidal focusing field is important for several reasons.
- Halo formations

Summary

- The periodic solenoidal focusing field is important for several reasons.
- Halo formations
\checkmark Uniform charge density

Summary

- The periodic solenoidal focusing field is important for several reasons.
- Halo formations
\checkmark Uniform charge density

Envelope	Mis-matched	Beam core oscillates because of initial mismatch $\&$	Envelope oscillation
	n-th order resonance	Space charge effect	

Summary

- The periodic solenoidal focusing field is important for several reasons.
- Halo formations
\checkmark Uniform charge density

Envelope	Mis-matched	Beam core oscillates because of initial mismatch $\&$	Envelope oscillation Resonance
	n-th order resonance	Space charge effect	Rarticle frequency

Summary

- The periodic solenoidal focusing field is important for several reasons.
- Halo formations
\checkmark Uniform charge density

Envelope	Mis-matched	Beam core oscillates because of initial mismatch $\&$	Envelope oscillation Resonance
	n-th order resonance	Space charge effect	Renticle frequency

\checkmark Non-uniform charge density (Gaussian)

Summary

- The periodic solenoidal focusing field is important for several reasons.
- Halo formations
\checkmark Uniform charge density

Envelope	Mis-matched	Beam core oscillates because of initial mismatch $\&$	Envelope oscillation R
	Space charge effect		

\checkmark Non-uniform charge density (Gaussian)

Envelope	Matched	Gaussian density profile	Non-linear space charge force

Summary

- The periodic solenoidal focusing field is important for several reasons.
- Halo formations
\checkmark Uniform charge density

Envelope	Mis-matched	Beam core oscillates because of initial mismatch $\&$	Envelope oscillation R
	n-th order resonance	Space charge effect	

\checkmark Non-uniform charge density (Gaussian)

Envelope	Matched	Gaussian density profile	Non-linear space charge force

- Symmetric gaussian -> radial motion
- Non symmetric gaussian -> coupled motions of x, y-> many test particles / single particle motions

Reference

- Chen, C., \& Davidson, R. C. (1994). "Nonlinear resonances and chaotic behavior in a periodically focused intense charged-particle beam." Physical review letters, 72(14), 2195.
- Ikegami, M. (1999). "Particle-core analysis of mismatched beams in a periodic focusing channel." Physical Review E, $59(2), 2330$.
" Wangler, T. P., Crandall, K. R., Ryne, R., \& Wang, T. S. (1998). "Particle-core model for transverse dynamics of beam halo." Physical review special topics-accelerators and beams, 1(8), 084201.
- Groening, L., Hofmann, I. (2011). "Experimental observation of space charge driven resonances in a linac."
- Qian, Q., Davidson, R. C., \& Chen, C. (1995). "Chaotic particle motion and halo formation induced by charge nonuniformities in an intense ion beam propagating through a periodic quadrupole focusing field." Physics of Plasmas, 2(7), 2674-2686.

Future plan

- Transverse particle beam dynamics
- particle-core model compare with PIC simulation of self-consistence
- Longitudinal beam dynamics
- Apply to the beam halo and beam loss measurement design input

Reference

- Chen, C., \& Davidson, R. C. (1994). "Nonlinear resonances and chaotic behavior in a periodically focused intense charged-particle beam." Physical review letters, 72(14), 2195.
- Ikegami, M. (1999). "Particle-core analysis of mismatched beams in a periodic focusing channel." Physical Review E, $59(2), 2330$.
" Wangler, T. P., Crandall, K. R., Ryne, R., \& Wang, T. S. (1998). "Particle-core model for transverse dynamics of beam halo." Physical review special topics-accelerators and beams, 1(8), 084201.
- Groening, L., Hofmann, I. (2011). "Experimental observation of space charge driven resonances in a linac."
- Qian, Q., Davidson, R. C., \& Chen, C. (1995). "Chaotic particle motion and halo formation induced by charge nonuniformities in an intense ion beam propagating through a periodic quadrupole focusing field." Physics of Plasmas, 2(7), 2674-2686.

Thank you for your attention !

61th ICFA Advanced Beam Dynamics Workshop
 on High-intensity and High-brightness Hadron beams (HB 2018)
 In Daejeon

Yoolim Cheon and Moses Chung,
Intense Beam and Accelerator Laboratory (IBAL),
Ulsan National Institute of Science and Technology (UNIST)

