
Joseph Duris, Dylan Kennedy, Daniel Ratner 
 
ICFA Advanced Beam Dynamics Workshop on High-Intensity and High- Brightness 
Hadron Beams (HB2018) 
June 21, 2018 

Bayesian optimization at LCLS 
using Gaussian processes 
Optimization of free electron laser pulse energy 



2 

Outline 

• Problem: 
• Beamline tuning at the Linac Coherent Light Source 

• Bayesian optimization: 
• Introduction 
• Gaussian process (GP) for probabilistic modeling 

• Our work: 
• Training the GP model on archive data 
• Some results: Bayesian optimization vs simplex for tuning 

• Future direction: 
• Limits to archive data 
• Plans to calculate GP model parameters from a physical 

model 
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Why build an FEL? 
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Shock waves in 
extreme conditions 

Structural 
biology 

Suga et al. 

Photosystem II 

Milathianaki et al. 

Si 

Cu powder 
diffraction 

Ekeberg et al., 

Single particle imaging (Mimivirus) 

Motivation 

Courtesy D. Ratner 
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FEL beamline tuning 

• LCLS tuning takes ~400 hours of beam time per year 
- Change beamline configurations 2-5 times per day 
- Online optimization of >30 dimensional space 
- Typical setup  

time ~30 mins Action Time 
(mins) 

Controller Search 
space 

Config change 10 Operators small 

Tune to find FEL 5-10 Operators large 

Tune quads 15 Simplex 24 

Undulator tuning 5-10 Operators 30 

Pointing / focusing 5 Operators small 

Most time 
spent here 

Opportunities for time savings 

• LCLS-II: more beamlines => more work with same people 
• Useful tools needed to help ease increased burden on 

operators 



6 

Beamline tuning: FEL vs quads 

Current approach to tuning: 
• Main objective: FEL pulse energy 
• Mostly operator controlled 
• Optimization is slow and costly 

Ocelot optimizer 
• Collaboration with DESY 
• Local simplex optimizer 
• Small batches of devices 
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Tuning strategy tradeoffs 

 
 

Human optimization 
- mental models 
- experience 
-  (relatively) slow decisions 
- limited working memory 

 

Numerical optimization 
- fast decisions 
- juggle many things  

at once 
- blind, local search 

• limited search space 

Bayesian optimization with machines  
combines strengths of both approaches 
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Bayesian optimization 

Challenge: Global optimization of difficult to evaluate, opaque function 
 
Algorithmic solution with Bayesian optimization:  
• Build probabilistic model of function given data 
• Acquisition function to choose next point based on model and 

uncertainties in that model’s predictions 
• Sample new point and update probabilities given new data 
 
Useful for any optimization problem but especially when: 
• Function evaluations are noisy 
• Function evaluations are costly (time = money) 
• Derivatives are difficult to evaluate 
• Prior information about the function is available 
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Comparison with classical machine learning algorithms 

Classical machine learning optimization often follows this pattern: 
• Given a training set of data 
• Fit data to a model (e.g. linear or neural network regression) 
• Use this fit model to make best guess predictions for future 

acquisitions (hope that your model extrapolates well) 
• Refit model (or back propagate errors to modify weights) & repeat 

 
Bayesian models do not give a best fit; rather, they give posterior 
distributions over functions. 
We exploit knowledge of our model uncertainty to make robust 
predictions for new test points. 
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Probabilistic model: Gaussian process 

Covariance or kernel function describes a 
function’s structure: 

Say we measure a function f(xi) with additive Gaussian noise 

Radial basis function: neighboring points within a 
length scale are related 

http://pythonhosted.org/
infpy/gps.html 

Covariance of any two points drawn from f is 

Long length scale 

Short length scale 
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Probabilistic model: Gaussian process 

Covariance function: 

x1 

x2 

x3 

x* 

Covariance matrix K for a collection of measured points: 

Covariance between test point x* and measured points: 

Covariance between test point and itself: 
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Gaussian process regression 

observations 

new point 

prior mean 

new point 
to predict 

Uncertainty: 

Expectation: 

Conditional probability for y* yields GP prediction: 

M. Ebner, GP for Regression 

Construct a joint prior on the observations and test point 
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Gaussian process takeaways 

GP is a non-parametric model: prediction is a function of measured data 
rather than a function of fit parameters 
 
What’s to love: 
• Posterior PDFs over functions and hyper-parameters 
• Noise is modeled => immune to overfitting 
• Automatic model selection  

• Likelihood maximization guides kernel selection  
 

One issue: 
• Matrix inversion => prediction time ~ cubic in number of acquisitions  

• At 2-3 seconds per acquisition, this isn’t really a problem 
• Myriad of ways to speed up: parallelize inversion, sparse GP, online 

GP, kernel interpolation, etc 
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Acquisition functions 

• Acquisition functions determine exploration behavior 
• Incorporate the prediction’s uncertainty in decision 

(Srinivas et al., 2010) 

We find using upper confidence bounds yields faster 
optimization. Free parameters are tuned via Monte Carlo 
tests. 

Expected improvement 
Easy to calculate for 
a Gaussian PDF! 



Acquisition point Acquisition point Acquisition point Acquisition point Acquisition point Acquisition point Acquisition point Acquisition point Acquisition point 
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Bayesian optimization with Gaussian processes 

• Gaussian process => probabilistic model 
• Acquisition function uses resulting probabilities to guide search 

Acquisition  
Function (EI) 

Ground truth 

GP posterior 

M.McIntire 
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GP fuzzy logic: data is more important than parameters 

The underlying distribution’s moments, are good approximations to 
the maximum likelihood estimate hyper-parameters. 

Amp param Noise param Length scale 

Ground 
truth 

GP 
regression 

Regression is insensitive to parameter errors. 
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Optimize FEL vs quadrupole magnets 

GP needs 2 key parameters: kernel and prior mean. Training data 
available over a wide range of configs from historical tuning. 

Widths of scans 
=>  
GP kernel 
parameters 

Trends in peaks of 
scans=>  
GP prior mean 

Prior mean 
biases and 
constrains 
search 
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Using the prior mean to tune up from noise 

GDET 
noise? 

GDET 
~ 50 uJ 

Beam power 

L3 energy 
Change 

14 -> 6.5 GeV 

GP run on  
LI26 quads 

GP run on  
LTU quads 

We used a Bayes prior from archived data to tune up a brand new config 
from noise. Simplex could not do this as it needs signal to tune on. 
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Tuning 12 quads starting with 30% of peak FEL 

Mean of 120 shots 

GP, expected improvement, Jan 2018 prior 

80th percentile of 
120 shots 

Simplex 
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Tuning 12 quads starting with 10% of peak FEL 

Mean of 120 shots 

GP, expected 
improvement, 
Jan 2018 prior 

80th percentile of 
120 shots 

GP, UCB 
Jan 2018 prior 

Simplex 
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Accommodating correlations between devices 

• FEL vs quads with RBF kernel 
 

 
• Diagonal kernel matrix => ignores correlations between quads 
 

• One approach: vary kernel matrix elements to maximize 
marginal likelihood for a set of prior scans 

• Another approach: map x to linearly independent basis y with 
diagonal kernel matrix 

n x n kernel matrix 
n devices 
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Accommodating correlations between devices 

• Correlations are not apparent in the archived data despite 
obvious relations (adjacent quads are anti-correlated) 

• High dimensional search space => sparse data 

No trend in correlations between 
quads 620 and 640 in a bunch of 
scans 

Measured FEL: quads 620 
and 640 are adjacent so must 
be anti-correlated 
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Hyper parameters from physical model 

Assuming estimate of Twiss functions somewhere along the 
beamline, we can use a linear transport model to estimate 
the beam sizes along the undulators as we change quads. 

Modeled beam size 
vs quads Work by UCSC 

PhD student   
D. Kennedy 
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Build GP from physical model 

• Estimated beam sizes + Ming Xie FEL model => FEL vs quads 
• Reasonable agreement with Genesis FEL code, but faster (~10 ms) 

Measured FEL vs quads Modeled beam size vs quads Modeled FEL vs quads 

• Modeled FEL => prior  
• Kernel params: Hessian of -log FEL(quads) estimates RBF kernel with 

correlations 

• After scan completes, GP likelihood yields posterior PDF on latent 
variables of model (e.g. slice emittance) 
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LCLS Bayesian optimization progress 

We’ve seen the Bayesian optimizer reduce tuning times from 
minutes to seconds using 
• GP hyper parameters and prior mean from fits to archived scans 

 
Would like to increase speed and consistency: 
• FEL model: hyper-parameters and prior 
• Correlations: transform coordinates 

 
Expand use-cases 
• Tune quads to minimize beam losses 
• Self-seeding optics vs. FEL peak brightness 
• Tuning quads, undulator taper to maximize FEL pulse energy 
• Control x-ray optics to maximize experimental signals 
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Thank you for your attention! 

Numerical optimizers 

Local 
• Gradient descent 
• Nelder-Mead simplex  

Global 
• Simulated annealing 
• Genetic algorithms 

For context: some various 
optimization methods Model based optimization 

(aka. machine learning) 
 
Deterministic 
• Fit model to data 
• Policy: optimize cost with 

respect to model 
 

Bayesian 
• Calculate probability over 

functions given data 
• Policy: optimize acquisition 

function given prediction and 
uncertainty 


