Bayesian optimization at LCLS using Gaussian processes

Optimization of free electron laser pulse energy

Joseph Duris, Dylan Kennedy, Daniel Ratner

ICFA Advanced Beam Dynamics Workshop on High-Intensity and High- Brightness Hadron Beams (HB2018)

June 21, 2018

Outline

- Problem:
 - Beamline tuning at the Linac Coherent Light Source
- Bayesian optimization:
 - Introduction
 - Gaussian process (GP) for probabilistic modeling
- Our work:
 - Training the GP model on archive data
 - Some results: Bayesian optimization vs simplex for tuning
- Future direction:
 - Limits to archive data
 - Plans to calculate GP model parameters from a physical model

LCLS

The Linac Coherent Light Source (LCLS) is transforming the face of SLAC. For more than 40 years, SLAC's two-mile long linear accelerator has produced cutting edge physics.

Now, scientists will continue this tradition of discovery using the final third of SLAC's linac to create an entirely new kind of laser.

0.2

The World's First Hard X-ray Free-Electron Laser

Courtesy D. Ratner

Motivation

Why build an FEL?

Photosystem II

Structural biology

Single particle imaging (Mimivirus)

Shock waves in extreme conditions

Courtesy D. Ratner

FEL beamline tuning

- Typical setup

- LCLS tuning takes ~400 hours of beam time per year
 - Change beamline configurations 2-5 times per day
 - Online optimization of >30 dimensional space

time ~30 mins	Action	Time (mins)	Controller	Search space
Most time spent here	Config change	10	Operators	small
	Tune to find FEL	5-10	Operators	large
	Tune quads	15	Simplex	24
	Undulator tuning	5-10	Operators	30
	Pointing / focusing	5	Operators	small

Opportunities for time savings

- LCLS-II: more beamlines => more work with same people
- Useful tools needed to help ease increased burden on operators

Beamline tuning: FEL vs quads

Current approach to tuning:

- Main objective: FEL pulse energy
- Mostly operator controlled
- Optimization is slow and costly

SLAC

Ocelot optimizer

- Collaboration with DESY
- Local simplex optimizer
- Small batches of devices

SLAC

Human optimization

- mental models
- experience
- (relatively) slow decisions
- limited working memory

Numerical optimization

- fast decisions
- juggle many things at once
- blind, local search
 - limited search space

Bayesian optimization with machines combines strengths of both approaches

SLAC

Challenge: Global optimization of difficult to evaluate, opaque function

Algorithmic solution with Bayesian optimization:

- Build **probabilistic model** of function given data
- Acquisition function to choose next point based on model and uncertainties in that model's predictions
- Sample new point and **update probabilities** given new data

Useful for any optimization problem but especially when:

- Function evaluations are noisy
- Function evaluations are costly (time = money)
- Derivatives are difficult to evaluate
- Prior information about the function is available

Comparison with classical machine learning algorithms

Classical machine learning optimization often follows this pattern:

- Given a training set of data
- Fit data to a model (e.g. linear or neural network regression)
- Use this fit model to make best guess predictions for future acquisitions (hope that your model extrapolates well)
- **Refit** model (or back propagate errors to modify weights) & repeat

Bayesian models do not give a best fit; rather, they give posterior distributions over functions.

We exploit knowledge of our model uncertainty to make robust predictions for new test points.

Say we measure a function $f(x_i)$ with additive Gaussian noise

$$y_i = f(\vec{x}_i) + \epsilon \qquad \epsilon \sim \mathcal{N}(0, \sigma)$$

Covariance of any two points drawn from f is

$$\operatorname{cov}(y_i, y_j) = k(\vec{x}_i, \vec{x}_j) + \sigma^2 \,\delta_{i,j}$$

Covariance or **kernel** function describes a function's structure:

$$k(x_i, x_j) = \theta \, e^{-\frac{1}{2} |x_i - x_j|^2 / \ell^2}$$

Radial basis function: neighboring points within a length scale are related

SLAC

http://pythonhosted.org/ infpy/gps.html 10 Covariance function: $k(\vec{x}_i, \vec{x}_j) = \theta e^{-\frac{1}{2}(\vec{x}_i - \vec{x}_j)^T \Sigma(\vec{x}_i - \vec{x}_j)}$

Covariance matrix K for a collection of measured points:

$$\operatorname{cov}(\vec{y}) = K + \sigma^2 I \qquad K_{i,j} = k(\vec{x}_i, \vec{x}_j)$$

Covariance between test point x* and measured points:

$$[K_*]_i = k(\vec{x}_i, \vec{x}_*)$$

Covariance between test point and itself:

$$K_{**} = k(\vec{x}_*, \, \vec{x}_*)$$

Construct a joint prior on the observations and test point

M. Ebner, GP for Regression 12

SLAC

GP is a non-parametric model: prediction is a <u>function of measured data</u> rather than a function of fit parameters

What's to love:

- **Posterior PDFs** over functions and hyper-parameters
- Noise is modeled => **immune to overfitting**
- Automatic model selection
 - Likelihood maximization guides kernel selection

One issue:

- Matrix inversion => prediction time ~ cubic in number of acquisitions
 - At 2-3 seconds per acquisition, this isn't really a problem
 - Myriad of ways to speed up: parallelize inversion, sparse GP, online GP, kernel interpolation, etc

Acquisition functions

- Acquisition functions determine exploration behavior
- Incorporate the prediction's uncertainty in decision

Expected improvement

$$I(\vec{x}) = \max(f(\vec{x}) - y_{\text{best}}, 0)$$

Easy to calculate for
a Gaussian PDF!
$$EI(\vec{x}) = \langle I(\vec{x}) \rangle = \int_{y_{\text{best}}}^{\infty} (f(\vec{x}) - y_{\text{best}}) p(y | \vec{x}) dy$$

We find using upper confidence bounds yields faster optimization. Free parameters are tuned via Monte Carlo

tests.

$$UCB(x^*) = \mu(x^*) + \sqrt{(\nu\tau_t)}\sigma(x^*)$$

$$\tau(t) = 2\log(t^{d/2+2}\pi^2/3\delta), \ 0 < \delta < 1, \ 0 < \nu$$

(Srinivas et al., 2010)

Bayesian optimization with Gaussian processes

- Gaussian process => probabilistic model
- Acquisition function uses resulting probabilities to guide search

GP fuzzy logic: data is more important than parameters

The underlying distribution's moments, are good approximations to the maximum likelihood estimate hyper-parameters.

Regression is insensitive to parameter errors.

Optimize FEL vs quadrupole magnets

GP needs 2 key parameters: **kernel** and **prior mean**. Training data available over a wide range of configs from historical tuning.

Using the prior mean to tune up from noise

We used a Bayes prior from archived data to tune up a brand new config from noise. Simplex could not do this as it needs signal to tune on.

Tuning 12 quads starting with 30% of peak FEL

Simplex

GP, expected improvement, Jan 2018 prior

SLAC

80th percentile of 120 shots

Mean of 120 shots

Tuning 12 quads starting with 10% of peak FEL

GP, expected

improvement,

Jan 2018 prior

Simplex

GP, UCB Jan 2018 prior

SLAC

80th percentile of 120 shots

Mean of 120 shots

Accommodating correlations between devices

FEL vs quads with RBF kernel / ^{n devices}

n x n kernel matrix

$$k_{\text{RBF}}(\vec{x}, \vec{x}') = \exp\left(-\frac{1}{2} (\vec{x} - \vec{x}')^T \Sigma (\vec{x} - \vec{x}')\right)$$

- Diagonal kernel matrix => ignores correlations between quads
- One approach: vary kernel matrix elements to maximize marginal likelihood for a set of prior scans
- Another approach: map x to linearly independent basis y with diagonal kernel matrix

$$\vec{x}^T \Sigma \vec{x} = \vec{x}^T S^T S \Sigma S^T S \vec{x}$$

$$= (S \vec{x})^T (S \Sigma S^T) (S \vec{x})$$

$$= \vec{y}^T \Sigma' \vec{y}$$
where $\vec{y} \equiv f(\vec{x}) \equiv S \vec{x}$ and $\Sigma' \equiv S \Sigma S^T$

Accommodating correlations between devices

- Correlations are not apparent in the archived data despite obvious relations (adjacent quads are anti-correlated)
- High dimensional search space => sparse data

No trend in correlations between quads 620 and 640 in a bunch of scans

Measured FEL: quads 620 and 640 are adjacent so must be anti-correlated

Assuming estimate of Twiss functions somewhere along the beamline, we can use a linear transport model to estimate the beam sizes along the undulators as we change quads.

Build GP from physical model

- Estimated beam sizes + Ming Xie FEL model => FEL vs quads
- Reasonable agreement with Genesis FEL code, but faster (~10 ms)

- Modeled FEL => prior
- Kernel params: Hessian of -log FEL(quads) estimates RBF kernel with correlations
- After scan completes, GP likelihood yields posterior PDF on latent variables of model (e.g. slice emittance)

We've seen the Bayesian optimizer reduce tuning times from minutes to seconds using

• GP hyper parameters and prior mean from fits to archived scans

Would like to increase speed and consistency:

- FEL model: hyper-parameters and prior
- Correlations: transform coordinates

Expand use-cases

- Tune quads to minimize beam losses
- Self-seeding optics vs. FEL peak brightness
- Tuning quads, undulator taper to maximize FEL pulse energy
- Control x-ray optics to maximize experimental signals

Daniel Ratner (SLAC) conceived of the idea of applying Bayesian optimization to LCLS tuning
Mitch McIntire (Stanford CS, Google) implemented the online GP and transforms on the feature space
Dylan Kennedy (UCSC) helped calculate prior and kernel parameters from archive data; now working on FEL model
Stefano Ermon (Stanford CS professor) advised GP deployment
Auralee Edelen (SLAC) new postdoc will help investigate acquisition function strategies.

This work was supported by the Department of Energy, Laboratory Directed Research and Development program at SLAC National Accelerator Laboratory, under contract DE-AC02-76SF00515.

SLAC

For context: some various optimization methods

Numerical optimizers

Local

- Gradient descent
- Nelder-Mead simplex

Global

- Simulated annealing
- Genetic algorithms

Model based optimization (aka. machine learning)

Deterministic

- · Fit model to data
- <u>Policy</u>: optimize cost with respect to model

Bayesian

- Calculate probability over functions given data
- <u>Policy</u>: optimize acquisition function given prediction and uncertainty