

Operation Challenges and Performance of the LHC During Run II

Rende Steerenberg - CERN

With many thanks to the operations team, the LHC machine coordinators and many experts

Scope

- This presentation will only deal with the main protons physics during Run II
- However, noteworthy is the remarkable performance that has been reached with the $\mathrm{Pb}-\mathrm{Pb}, \mathrm{p}^{+}-\mathrm{Pb}$ (and $\mathrm{Xe}-\mathrm{Xe}$) runs
- LIU performance has already been achieved (slip stacking to be added in SPS)
- Very high machine availability during these runs (low intensity / luminosity)
- Record stable beams time of 37 hours for a single fill.

\square Shutdown/Technical stop
Protons physics
Commissioning
Ions

Topics

- Introduction
- Performance Through Availability
- Beam Performance \& Beam Physics Challenges
- Preparing for the Future
- Summary
- Introduction
- Performance Through Availability
- Beam Performance \& Beam Physics Challenges
- Preparing for the Future
- Summary

The LHC and its Injector Complex

- The LHC performance is largely determined by injector complex performance
- Availability
- Beam quality \rightarrow Brightness

The LHC and its Injector Complex

- The LHC performance is largely determined by injector complex performance
- Availability
- Beam quality \rightarrow Brightness
- The PSB determines initial beam brightness
- The PS determines the timing structure
- 25ns, 50ns, BCMS, 8b4e, ...

The LHC and its Injector Complex

- The LHC performance is largely determined by injector complex performance
- Availability
- Beam quality \rightarrow Brightness
- The PSB determines initial beam brightness
- The PS determines the timing structure
- $25 n \mathrm{n}, 50 \mathrm{~ns}, \mathrm{BCMS}, 8 \mathrm{~b} 4 \mathrm{e}, \ldots$

LHC Beam in the Injector Complex

Filling \& Cycling the LHC

Time \qquad

- An increased number of kicker gaps, hence injections, reduces the number of bunches in the LHC

Multi-Annual Integrated Luminosity

- Run I
- 2011: Commissioning at $3.5 \mathrm{TeV} / \mathrm{beam}$
- 2012: Production at $4 \mathrm{TeV} / \mathrm{beam}$
- LS1: 2013 \& 2014
- Run II
- 2015: commissioning at $6.5 \mathrm{TeV} /$ beam
- 2016, 2017 and 2018: Production at 6.5 TeV/beam

LS2: 2019 \& 2020

Reaching the Run I + Run II Goal

The LHC goal up to LS2 is $150 \mathrm{fb}^{-1}$

Period	Int. Luminosity $\left[f b^{-1}\right]$
Run 1	29.2
Run 2: 2015	4.2
Run 2: 2016	39.7
Run 2: 2017	50.2
Run 2: 2018	23.2
Total Run 1+2	146.5

- Introduction
- Performance Through Availability
- Beam Performance \& Beam Physics Challenges
- Preparing for the Future
- Summary

LHC Machine \& Beam Performance

- The performance of a complex collider like the LHC is firstly dominated by machine availability, operational efficiency and stable beam time, hence technical aspects
- Secondly, the beam performance will determine the luminosity production rate during the available beam time
- The Goal is 50\% Stable beam time

Multi-Annual LHC Availability

2015

SB $=33 \%$

- 2015 was a re-commissioning year after Long Shutdown 1
- In 2015 LHC ran with 50 ns and 25 ns bunch spacing, availability is for 25 ns
- 2016, 2017 and 2018 are the luminosity production years
- For 2018 , only at $\sim 1 / 3$ of the year...

Multi-Annual LHC Availability

- 2015 was a re-commissioning year after Long Shutdown 1
- In 2015 LHC ran with 50 ns and 25 ns bunch spacing, availability is for 25 ns
- 2016, 2017 and 2018 are the luminosity production years
- For 2018 , only at $\sim 1 / 3$ of the year...

Multi-Annual LHC Availability

SB $=33 \%$

$S B=49 \%$

2017

SB = 49\%

- 2015 was a re-commissioning year after Long Shutdown 1
- In 2015 LHC ran with 50 ns and 25 ns bunch spacing, availability is for 25 ns
- 2016, 2017 and 2018 are the luminosity production years
- For 2018 , only at $\sim 1 / 3$ of the year...

Multi-Annual LHC Availability

SB = 33\%

$S B=49 \%$

2017

SB = 49\%

- 2015 was a re-commissioning year after Long Shutdown 1
- In 2015 LHC ran with 50 ns and 25 ns bunch spacing, availability is for 25 ns
- 2016, 2017 and 2018 are the luminosity production years
- For 2018 , only at $\sim 1 / 3$ of the year...

Some Examples of Technical Issues Addressed

- Cryogenic heat loads with high intensity:
- Heat sources:
- Impedance, photons and electron cloud
- Beam injection and extraction caused heat load step functions on beam screen
- Feedforward based on beam intensity, energy and filling scheme implemented

Some Examples of Technical Issues Addressed

- Cryogenic heat loads with high intensity:
- Heat sources:
- Impedance, photons and electron cloud
- Beam injection and extraction caused heat load step functions on beam screen
- Feedforward based on beam intensity, energy and filling scheme implemented

- Radiation to electronics (R2E)
- Close to the Interaction Points (IP) failure rates are dominated by integrated luminosity
- In the arcs failure rates are dominated by beam-gas interactions, hence circulating beam intensity
- Cures:
- Move electronics further away in shielded areas \rightarrow was done during Long Shutdown 1 (2013-2014)
- More radiation hard electronics \rightarrow was done for part in 2015-2016 YETS
- Introduction
- Performance Through Availability
- Beam Performance \& Beam Physics Challenges
- Preparing for the Future
- Summary

Peak Luminosity and its Evolution

Peak Luminosity and its Evolution

- 2016: the LHC well beyond its design luminosity
- Despite a reduced number of bunches
- Thanks to the brighter injectors beam

Peak Luminosity and its Evolution

- 2016: the LHC well beyond its design luminosity
- Despite a reduced number of bunches
- Thanks to the brighter injectors beam

Peak Luminosity and its Evolution

- 2016: the LHC well beyond its design luminosity
- Despite a reduced number of bunches
- Thanks to the brighter injectors beam
- Every year:
- The peak luminosity is higher than previous years
- The time in which the peak luminosity is reached is shorter

Peak Luminosity and its Evolution

- 2016: the LHC well beyond its design luminosity
- Despite a reduced number of bunches
- Thanks to the brighter injectors beam
- Every year:
- The peak luminosity is higher than previous years
- The time in which the peak luminosity is reached is shorter

Peak Luminosity and its Evolution

- 2016: the LHC well beyond its design luminosity
- Despite a reduced number of bunches
- Thanks to the brighter injectors beam
- Every year:
- The peak luminosity is higher than previous years
- The time in which the peak luminosity is reached is shorter

Peak Luminosity and its Evolution

- 2016: the LHC well beyond its design luminosity
- Despite a reduced number of bunches
- Thanks to the brighter injectors beam
- Every year:
- The peak luminosity is higher than previous years
- The time in which the peak luminosity is reached is shorter

Peak Luminosity and its Evolution

- 2016: the LHC well beyond its design luminosity
- Despite a reduced number of bunches
- Thanks to the brighter injectors beam
- Every year:
- The peak luminosity is higher than previous years
- The time in which the peak luminosity is reached is shorter

Machine \& Beam Parameters

$\left.\begin{array}{lc}\hline \text { Parameter } & \text { Beam type: }\end{array} \begin{array}{c}\text { Design } \\ \text { Std }\end{array}\right]$

Machine \& Beam Parameters

Parameter	Design Std	2015 Std
Energy [TeV]	7	6.5
Number of bunches per ring	2808	2244
Bunch spacing [ns]	25	25
Bunch population $N_{b}\left[10^{11} \mathrm{p} / \mathrm{b}\right]$	1.15	1.15
Transv. norm. emittance SB $\varepsilon_{n}[\mathrm{~mm}$ mrad]	3.75	3.5
Betatron function at IP1 and IP5 $\beta^{*}[\mathrm{~m}]$	0.55	0.8
Half crossing angle $[\mu \mathrm{rad}]$	142.5	145
Peak luminosity $\left[10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$	1	0.55
Maximum pile up μ (per bunch crossing)	~ 20	~ 15
Stored beam energy [MJ]	360	270
Integrated luminosity per year [fb $\left.{ }^{-1}\right]$	n.a.	4.2

Machine \& Beam Parameters

Parameter	Design Std	$\mathbf{2 0 1 5}$ Std	2016 Std/BCMS
Energy [TeV]	7	6.5	6.5
Number of bunches per ring	2808	2244	$2040 / 2076$
Bunch spacing [ns]	25	25	25
Bunch population $N_{b}\left[10^{11} \mathrm{p} / \mathrm{b}\right]$	1.15	1.15	1.2
Transv. norm. emittance $\mathrm{SB} \varepsilon_{n}[\mathrm{~mm} \mathrm{mrad}]$	3.75	3.5	$3.5 / 2.1$
Betatron function at IP1 and IP5 $\beta^{*}[\mathrm{~m}]$	0.55	0.8	0.4
Half crossing angle $[\mu \mathrm{rad}]$	142.5	145	185
Peak luminosity $\left[10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$	1	0.55	$0.83 / 1.4$
Maximum pile up $\mu(\mathrm{per}$ bunch crossing)	~ 20	~ 15	$\sim 20 / 35$
Stored beam energy $[\mathrm{MJ}]$	360	270	345
Integrated luminosity per year $\left[\mathrm{fb}^{-1}\right]$	n.a.	4.2	39.7

Reduction of $\beta^{*} \rightarrow$ increase
of crossing angle

Limited by the SPS internal beam dump that suffered a vacuum leak

- Initially 72 std bunches/inj. Later 96 BCMS bunches/inj.

Machine \& Beam Parameters

Parameter	Design	2015	2016	2017		
Beam type:	Std	Std	Std/BCMS	BCMS	8b4e	8b4e-BCS
Energy [TeV]	7	6.5	6.5	6.5	6.5	6.5
Number of bunches per ring	2808	2244	2040/2076	2556	1916	1868
Bunch spacing [ns]	25	25	25	25	25	25
Bunch population $N_{b}\left[10^{11} \mathrm{p} / \mathrm{b}\right]$	1.15	1.15	1.2	1.35	1.2	1.25
Transv. norm. emittance SB $\varepsilon_{n}[\mathrm{~mm}$ mrad]	3.75	3.5	3.5/2.1	2.1	2.3	1.8
Betatron function at IP1 and IP5 β^{*} [m]	0.55	0.8	0.4	0.4	0.4/0.3	0.3
Half crossing angle [$\mu \mathrm{rad}$]	142.5	145	185	150	150	$150 / 110^{(1)}$
Peak luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$]	1	0.55	0.83/1.4	1.74	1.9	$2.06 / 1.5^{(2)}$
Maximum pile up μ (per bunch crossing)	~ 20	~ 15	~20/35	~ 45	70/60 ${ }^{(2)}$	80/60 ${ }^{(2)}$
Stored beam energy [MJ]	360	270	345	360	240	245
Integrated luminosity per year [fb^{-1}]	n.a.	4.2	39.7		50.2	

[^0]
Machine \& Beam Parameters

Parameter	Design	2015	2016	2017			2018
Beam type:	Std	Std	Std/BCMS	BCMS	8b4e	8b4e-BCS	BCMS
Energy [TeV]	7	6.5	6.5	6.5	6.5	6.5	6.5
Number of bunches per ring	2808	2244	2040/2076	2556	1916	1868	2556
Bunch spacing [ns]	25	25	25	25	25	25	25
Bunch population $N_{b}\left[10^{11} \mathrm{p} / \mathrm{b}\right]$	1.15	1.15	1.2	1.35	1.2	1.25	1.2
Transv. norm. emittance SB $\varepsilon_{n}[\mathrm{~mm}$ mrad]	3.75	3.5	3.5/2.1	2.1	2.3	1.8	2
Betatron function at IP1 and IP5 β^{*} [m]	0.55	0.8	0.4	0.4	0.4/0.3	0.3	0.3/0.25 ${ }^{(3)}$
Half crossing angle [$\mu \mathrm{rad}$]	142.5	145	185	150	150	$150 / 110^{(1)}$	$150 / 110^{(1)}$
Peak luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$]	1	0.55	0.83/1.4	1.74	1.9	2.06/1.5 ${ }^{(2)}$	2.1
Maximum pile up μ (per bunch crossing)	~ 20	~15	$\sim 20 / 35$	~ 45	70/60 ${ }^{(2)}$	$80 / 60^{(2)}$	60
Stored beam energy [MJ]	360	270	345	360	240	245	320
Integrated luminosity per year [fb^{-1}]	n.a.	4.2	39.7		50.2		n.a.

${ }^{(1)}$ Minimum crossing angle during crossing angle anti-levelling
${ }^{(2)}$ Value after luminosity-levelling by separation
${ }^{(3)}$ Minimum betatron function during betatron anti-levelling

Dealing With Tune \& Chroma Shifts

1. On a plateau the magnetic field multipoles drift due to current redistribution in superconducting cables

- This leads to a decay of Q and Q'

2. Laslett tune shift feedforward

- An automated correction based on calculations, using the measured beam intensity was operationally deployed in 2016

Michaela Schaumann et al.

Electron Cloud / Heat Load

- E-cloud causes beam induced heat load, which differs for each sector
- Cause for emittance growth and instabilities
- Mitigated by reducing secondary electron emission yield through:
- Scrubbing run at the start of the run/year
- Continuous scrubbing during the physics run
- Different heat loads for different sectors not yet understood

Instabilities

- Emittance and intensity are constantly pushed toward higher brightness, leading to increased effects from wake fields on the transverse stability
- Sources:
- Impedance, like collimators, kickers etc.
- e-cloud
- Noise from magnets and transverse damper
- Rather good impedance model available, benchmarked with measurements, allows predicting and understanding observations
- Usual knobs to mitigate instabilities:
- Chromaticity
- Octupoles
- Coupling

Beam Dumps due to Fast Losses

- Accidental air Inlet in beam vacuum in half cell 16 left of IP2 (16L2) during 2016-2017 Technical stop
- Initially mitigated by 8 b 4 e beam that suppresses e-cloud and "home-made" solenoid
- Later by partial warm-up an vacuum pumping
- Not fully recovered yet, but no longer limiting performance

Transverse Emittance Growth

M. Hostettler et al.

- Injection plateau
- Usual IBS, but also additional growth due to e-cloud
- Ramp
- Important blow up, not yet understood, with high potential gain for luminosity
- Stable beams
- Normally no or little net blow up also thanks to synchrotron damping

Beam Life time

- Long beam lifetimes are of prime importance for luminosity production
- Presently:
- Higher than luminosity burn off losses at the start of collisions
- Large difference between beam 1 and beam 2
- Being investigated...

- Introduction
- Performance Through Availability
- Beam Performance \& Beam Physics Challenges
- Preparing for the Future
- Summary

Levelling \& Anti-levelling

- In certain conditions and depending on the experiments request, it is desirable to adapt the luminosity dynamically with beams in collision - levelling.

Luminosity Anti-levelling

- In 2017 step-wise crossing angle anti-levelling was introduced
- 3 steps depending on the luminosity burn-off
- In 2018:
- The crossing angle anti-levelling is done continuously, down to $130 \mu \mathrm{rad}$
- A step-wise β^{*} anti-levelling has been added
- $\beta^{*}=30 \mathrm{~cm} \rightarrow 27.5 \mathrm{~cm} \rightarrow 25 \mathrm{~cm}$
- Allows few \% gain in integrated luminosity, but is a vital exercise for future (HL-LHC) levelling

ATS Optics

- ATS = Achromatic Telescopic Squeeze
- Increase β-function in the arcs to enhance effect of inner triplets around the experiments
- Baseline optics for the HL-LHC, to allow for $\beta^{*}=0.15 \mathrm{~m}$
- In addition, depending on the "telescopic factor" octupoles will have more effect for same current, thanks to larger β-functions in the arcs
- Deployed as proof of principle and to gain operational experience
- Further development continues during MD sessions

- Introduction
- Performance Through Availability
- Beam Performance \& Beam Physics Challenges
- Preparing for the Future
- Summary

Summary

- During the production years 2016, 2017, 2018 (so far) the 50% stable beam ratio has been achieved
- The LHC is presently only $3.5 \mathrm{fb}^{-1}$ away from the goal until LS2 of $150 \mathrm{fb}^{-1}$ (Run I + Run II)
- The peak luminosity is beyond twice the design luminosity
($2.1 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ versus $1 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)
- Beam physics challenges have been or are being addressed and for most mitigation measures are in place, others are being investigated
- The future for HL-LHC is being prepared and operational experience is gained with future principles/methods and tools

Rende Steerenberg - CERN
61st ICFA Advanced Beam Dynamics Workshop HB 2018, Daejeon, Korea, 18-22 June 2018

[^0]: ${ }^{(1)}$ Minimum crossing angle during crossing angle anti-levelling
 (2) Value after luminosity-levelling by separation
 ${ }^{(3)}$ Minimum betatron function during betatron anti-levelling
 Various beam configurations due to gas condensate in interconnection (16L2)

