

Operation Challenges and Performance of the LHC During Run II

Rende Steerenberg – CERN

With many thanks to the operations team, the LHC machine coordinators and many experts

Rende Steerenberg - CERN

Scope

- This presentation will only deal with the main protons physics during Run II
- However, noteworthy is the remarkable performance that has been reached with the Pb-Pb, p⁺-Pb (and Xe-Xe) runs
 - LIU performance has already been achieved (slip stacking to be added in SPS)
 - Very high machine availability during these runs (low intensity / luminosity)
 - Record stable beams time of 37 hours for a single fill.

Commissioning Ions

Rende Steerenberg - CERN

Topics

- Introduction
- Performance Through Availability
- Beam Performance & Beam Physics Challenges
- Preparing for the Future
- Summary

Introduction

- Performance Through Availability
- Beam Performance & Beam Physics Challenges
- Preparing for the Future
- Summary

The LHC and its Injector Complex

- The LHC performance is largely determined by injector complex performance
 - Availability
 - Beam quality → Brightness

Rende Steerenberg - CERN

The LHC and its Injector Complex

- The LHC performance is largely determined by injector complex performance
 - Availability
 - Beam quality → Brightness
- The PSB determines initial beam brightness
- The PS determines the timing structure
 - 25ns, 50ns, BCMS, 8b4e, ...

Rende Steerenberg - CERN

The LHC and its Injector Complex

- The LHC performance is largely determined by injector complex performance
 - Availability
 - Beam quality → Brightness
- The PSB determines initial beam brightness
- The PS determines the timing structure
 - 25ns, 50ns, BCMS, 8b4e, ...

See also:

MOA1PL01, H. Bartosik; MOA1PL02, G. Rumolo; MOA1PL03, G. Bellodi; THA1WD04, K. Hanke

Rende Steerenberg - CERN

LHC Beam in the Injector Complex

 An increased number of kicker gaps, hence injections, reduces the number of bunches in the LHC

Rende Steerenberg - CERN

Multi-Annual Integrated Luminosity

• Run I

- 2011: Commissioning at 3.5 TeV/beam
- 2012: Production at 4 TeV/beam
- LS1: 2013 & 2014
- Run II
 - 2015: commissioning at 6.5 TeV/beam
 - 2016, 2017 and 2018: Production at 6.5 TeV/beam
- LS2: 2019 & 2020

Rende Steerenberg - CERN

Reaching the Run I + Run II Goal

The LHC goal up to LS2 i	S
150 fb ⁻¹	

Period	Int. Luminosity [fb ⁻¹]
Run 1	29.2
Run 2: 2015	4.2
Run 2: 2016	39.7
Run 2: 2017	50.2
Run 2: 2018	23.2
Total Run 1+ 2	146.5

Rende Steerenberg - CERN

- Introduction
- Performance Through Availability
- Beam Performance & Beam Physics Challenges
- Preparing for the Future
- Summary

LHC Machine & Beam Performance

- The performance of a complex collider like the LHC is firstly dominated by machine availability, operational efficiency and stable beam time, hence technical aspects
- Secondly, the **beam performance** will determine the luminosity production rate during the available beam time
- The Goal is 50% Stable beam time

Rende Steerenberg - CERN

2015

SB = 33%

- 2015 was a re-commissioning year after Long Shutdown 1
- In 2015 LHC ran with 50 ns and 25 ns bunch spacing, availability is for 25 ns
- 2016, 2017 and 2018 are the luminosity production years
- For 2018, only at ~1/3 of the year...

Rende Steerenberg - CERN

- 2015 was a re-commissioning year after Long Shutdown 1
- In 2015 LHC ran with 50 ns and 25 ns bunch spacing, availability is for 25 ns
- 2016, 2017 and 2018 are the luminosity production years
- For 2018, only at ~1/3 of the year...

Rende Steerenberg - CERN

- 2015 was a re-commissioning year after Long Shutdown 1
- In 2015 LHC ran with 50 ns and 25 ns bunch spacing, availability is for 25 ns
- 2016, 2017 and 2018 are the luminosity production years
- For 2018, only at ~1/3 of the year...

Rende Steerenberg - CERN

- 2015 was a re-commissioning year after Long Shutdown 1
- In 2015 LHC ran with 50 ns and 25 ns bunch spacing, availability is for 25 ns
- 2016, 2017 and 2018 are the luminosity production years
- For 2018, only at ~1/3 of the year...

Rende Steerenberg - CERN

Some Examples of Technical Issues Addressed

Cryogenic heat loads with high intensity:

- Heat sources:
 - Impedance, photons and electron cloud
- Beam injection and extraction caused heat load step functions on beam screen
 - Feedforward based on beam intensity, energy and filling scheme implemented

Rende Steerenberg - CERN

Some Examples of Technical Issues Addressed

Cryogenic heat loads with high intensity:

- Heat sources:
 - Impedance, photons and electron cloud
- Beam injection and extraction caused heat load step functions on beam screen
 - Feedforward based on beam intensity, energy and filling scheme implemented

Radiation to electronics (R2E)

- In the arcs failure rates are dominated by beam-gas interactions, hence circulating beam intensity
- Cures:
 - Move electronics further away in shielded areas \rightarrow was done during Long Shutdown 1 (2013-2014)
 - More radiation hard electronics → was done for part in 2015-2016 YETS

Rende Steerenberg - CERN

- Introduction
- Performance Through Availability

Beam Performance & Beam Physics Challenges

- Preparing for the Future
- Summary

Rende Steerenberg - CERN

- 2016: the LHC well beyond its design luminosity
 - Despite a reduced number of bunches
 - Thanks to the brighter injectors beam

Rende Steerenberg - CERN

- 2016: the LHC well beyond its design luminosity
 - Despite a reduced number of bunches
 - Thanks to the brighter injectors beam

Rende Steerenberg - CERN

- 2016: the LHC well beyond its design luminosity
 - Despite a reduced number of bunches
 - Thanks to the brighter injectors beam

Every year:

- The peak luminosity is higher than previous years
- The time in which the peak luminosity is reached is shorter

Rende Steerenberg - CERN

- 2016: the LHC well beyond its design luminosity
 - Despite a reduced number of bunches
 - Thanks to the brighter injectors beam

Every year:

- The peak luminosity is higher than previous years
- The time in which the peak luminosity is reached is shorter

Rende Steerenberg - CERN

- 2016: the LHC well beyond its design luminosity
 - Despite a reduced number of bunches
 - Thanks to the brighter injectors beam

Every year:

- The peak luminosity is higher than previous years
- The time in which the peak luminosity is reached is shorter

Rende Steerenberg - CERN

- 2016: the LHC well beyond its design luminosity
 - Despite a reduced number of bunches
 - Thanks to the brighter injectors beam

Every year:

- The peak luminosity is higher than previous years
- The time in which the peak luminosity is reached is shorter

Rende Steerenberg - CERN

- 2016: the LHC well beyond its design luminosity
 - Despite a reduced number of bunches
 - Thanks to the brighter injectors beam

Every year:

- The peak luminosity is higher than previous years
- The time in which the peak luminosity is reached is shorter

Rende Steerenberg - CERN

Parameter	Design
Beam type:	Std
Energy [TeV]	7
Number of bunches per ring	2808
Bunch spacing [ns]	25
Bunch population N_b [10 ¹¹ p/b]	1.15
<u>Transv</u> . norm. emittance SB ε_n [mm mrad]	3.75
Betatron function at IP1 and IP5 β^* [m]	0.55
Half crossing angle [µrad]	142.5
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1
Maximum pile up μ (per bunch crossing)	~20
Stored beam energy [MJ]	360
Integrated luminosity per year [fb ⁻¹]	<u>n.a</u> .

Rende Steerenberg - CERN

Parameter	Design	2015
Beam type:	Std	Std
Energy [TeV]	7	6.5
Number of bunches per ring	2808	2244
Bunch spacing [ns]	25	25
Bunch population N_b [10 ¹¹ p/b]	1.15	1.15
<u>Transv</u> . norm. emittance SB ε_n [mm mrad]	3.75	3.5
Betatron function at IP1 and IP5 β^* [m]	0.55	0.8
Half crossing angle [µrad]	142.5	145
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1	0.55
Maximum pile up μ (per bunch crossing)	~20	~15
Stored beam energy [MJ]	360	270
Integrated luminosity per year [fb ⁻¹]	<u>n.a</u> .	4.2

Rende Steerenberg - CERN

Parameter	Design	2015	2016	
Beam type:	Std	Std	Std/BCMS	
Energy [TeV]	7	6.5	6.5	
Number of bunches per ring	2808	2244	2040/2076	
Bunch spacing [ns]	25	25	25	Reduction of $\beta^* \rightarrow$ incre
Bunch population N_b [10 ¹¹ p/b]	1.15	1.15	1.2	recurrence in
<u>Transv</u> . norm. emittance SB ε_n [mm mrad]	3.75	3.5	3.5/2.1	or crossing angle
Betatron function at IP1 and IP5 β^* [m]	0.55	0.8	0.4	
Half crossing angle [µrad]	142.5	145	185	
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1	0.55	0.83/1.4	
Maximum pile up μ (per bunch crossing)	~20	~15	~20/35	
Stored beam energy [MJ]	360	270	345	
Integrated luminosity per year [fb ⁻¹]	<u>n.a</u> .	4.2	39.7	

Limited by the SPS internal beam dump that suffered a vacuum leak

• Initially 72 std bunches/inj. Later 96 BCMS bunches/inj.

Rende Steerenberg - CERN

Parameter	Design	2015	2016		2017	
Beam type:	Std	Std	Std/BCMS	BCMS	8b4e	8b4e-BCS
Energy [TeV]	7	6.5	6.5	6.5	6.5	6.5
Number of bunches per ring	2808	2244	2040/2076	2556	1916	1868
Bunch spacing [ns]	25	25	25	25	25	25
Bunch population N_b [10 ¹¹ p/b]	1.15	1.15	1.2	1.35	1.2	1.25
Transv. norm. emittance SB En [mm mrad]	3.75	3.5	3.5/2.1	2.1	2.3	1.8
Betatron function at IP1 and IP5 β^* [m]	0.55	0.8	0.4	0.4	0.4/0.3	0.3
Half crossing angle [µrad]	142.5	145	185	150	150	150/110 ⁽¹⁾
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1	0.55	0.83/1.4	1.74	1.9	$2.06/1.5^{(2)}$
Maximum pile up μ (per bunch crossing)	~20	~15	~20/35	~45	70/60 ⁽²⁾	80/60 ⁽²⁾
Stored beam energy [MJ]	360	270	345	360	240	245
Integrated luminosity per year [fb ⁻¹]	<u>n.a</u> .	4.2	39.7		50.2	

⁽¹⁾ Minimum crossing angle during crossing angle anti-levelling
 ⁽²⁾ Value after luminosity-levelling by separation

⁽³⁾ Minimum <u>betatron</u> function during <u>betatron</u> anti-levelling

Various beam configurations due to gas condensate in interconnection (16L2)

Rende Steerenberg - CERN

Parameter	Design	2015	2016		2017		2018
Beam type:	Std	Std	Std/BCMS	BCMS	8b4e	8b4e-BCS	BCMS
Energy [TeV]	7	6.5	6.5	6.5	6.5	6.5	6.5
Number of bunches per ring	2808	2244	2040/2076	2556	1916	1868	2556
Bunch spacing [ns]	25	25	25	25	25	25	25
Bunch population N_b [10 ¹¹ p/b]	1.15	1.15	1.2	1.35	1.2	1.25	1.2
<u>Transv</u> . norm. emittance SB ε_n [mm mrad]	3.75	3.5	3.5/2.1	2.1	2.3	1.8	2
Betatron function at IP1 and IP5 β^* [m]	0.55	0.8	0.4	0.4	0.4/0.3	0.3	0.3/0.25(3)
Half crossing angle [µrad]	142.5	145	185	150	150	150/110(1)	150/110(1)
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1	0.55	0.83/1.4	1.74	1.9	$2.06/1.5^{(2)}$	2.1
Maximum pile up μ (per bunch crossing)	~20	~15	~20/35	~45	70/60 ⁽²⁾	80/60 ⁽²⁾	60
Stored beam energy [MJ]	360	270	345	360	240	245	320
Integrated luminosity per year [fb ⁻¹]	<u>n.a</u> .	4.2	39.7		50.2		<u>n.a</u> .

⁽¹⁾ Minimum crossing angle during crossing angle anti-levelling

⁽²⁾ Value after luminosity-levelling by separation

⁽³⁾ Minimum <u>betatron</u> function during <u>betatron</u> anti-levelling

Rende Steerenberg - CERN

Dealing With Tune & Chroma Shifts

- 1. On a plateau the magnetic field multipoles drift due to current redistribution in superconducting cables
 - This leads to a decay of Q and Q'
- 2. Laslett tune shift feedforward
 - An automated correction based on calculations, using the measured beam intensity was operationally deployed in 2016

Michaela Schaumann et al.

Rende Steerenberg - CERN

Electron Cloud / Heat Load

- E-cloud causes beam induced heat load, which differs for each sector
- Cause for emittance growth and instabilities
- Mitigated by reducing secondary electron emission yield through:
 - Scrubbing run at the start of the run/year
 - Continuous scrubbing during the physics run
- Different heat loads for different sectors not yet understood

Rende Steerenberg - CERN

Aver for the state of the state

Instabilities

- Emittance and intensity are constantly pushed toward higher brightness, leading to increased effects from wake fields on the transverse stability
- Sources:
 - Impedance, like collimators, kickers etc.
 - e-cloud
 - Noise from magnets and transverse damper
- Rather good impedance model available, benchmarked with measurements, allows predicting and understanding observations
- Usual knobs to mitigate instabilities:
 - Chromaticity
 - Octupoles
 - Coupling

Rende Steerenberg - CERN

Beam Dumps due to Fast Losses

- Accidental air Inlet in beam vacuum in half cell 16 left of IP2 (16L2) during 2016-2017 Technical stop
- Initially mitigated by 8b4e beam that suppresses e-cloud and "home-made" solenoid
- Later by partial warm-up an vacuum pumping
- Not fully recovered yet, but no longer limiting performance

See also: WEP1WA01, L. Mether

Rende Steerenberg - CERN

Transverse Emittance Growth

- Injection plateau
 - Usual IBS, but also additional growth due to e-cloud
- Ramp
 - Important blow up, not yet understood, with high potential gain for luminosity
- Stable beams
 - Normally no or little net blow up
 also thanks to synchrotron damping

	ВС	MS	8b4e	-BCS
	H [%]	V [%]	H [%]	V [%]
Inj.	15 %	9 %	17 %	15 %
	0.3 um	0.1 um	0.2 um	0.15 um
ramp	5 %	22 %	43 %	45 %
	0.1 um	0.4 um	0.6 um	0.6 um

Beam Life time

- Long beam lifetimes are of prime importance for luminosity production
- Presently :
- Higher than luminosity burn off losses at the start of collisions
- Large difference between beam 1 and beam 2
- Being investigated...

See also: WEPWA02, Y. Papaphilippou

Rende Steerenberg - CERN

- Introduction
- Performance Through Availability
- Beam Performance & Beam Physics Challenges
- Preparing for the Future
- Summary

Levelling & Anti-levelling

• In certain conditions and depending on the experiments request, it is desirable to adapt the luminosity dynamically with beams in collision – **levelling**.

Rende Steerenberg - CERN

Luminosity Anti-levelling

- In 2017 step-wise crossing angle anti-levelling was introduced
 - 3 steps depending on the luminosity burn-off
- In 2018:
 - The crossing angle anti-levelling is done continuously, down to 130 μ rad
 - A step-wise β^* anti-levelling has been added
 - $\beta^*=30 \text{ cm} \rightarrow 27.5 \text{ cm} \rightarrow 25 \text{ cm}$
- Allows few % gain in integrated luminosity, but is a vital exercise for future (HL-LHC) levelling

ATS Optics

- ATS = Achromatic Telescopic Squeeze
 - Increase β -function in the arcs to enhance effect of inner triplets around the experiments
 - Baseline optics for the HL-LHC, to allow for $\beta^*=0.15$ m
- In addition, depending on the "telescopic factor" octupoles will have more effect for same current, thanks to larger β-functions in the arcs
- Deployed as proof of principle and to gain operational experience
- Further development continues during MD sessions

Rende Steerenberg - CERN

- Introduction
- Performance Through Availability
- Beam Performance & Beam Physics Challenges
- Preparing for the Future
- Summary

Rende Steerenberg - CERN

Summary

- During the production years 2016, 2017, 2018 (so far) the 50% stable beam ratio has been achieved
- The LHC is presently only 3.5 fb⁻¹ away from the goal until LS2 of 150 fb⁻¹ (Run I + Run II)
- The peak luminosity is beyond twice the design luminosity (2.1x10³⁴ cm⁻²s⁻¹ versus 1x10³⁴ cm⁻²s⁻¹)
- Beam physics challenges have been or are being addressed and for most mitigation measures are in place, others are being investigated
- The future for HL-LHC is being prepared and operational experience is gained with future principles/methods and tools

Rende Steerenberg - CERN

www.cern.ch