

60 mA Beam Study and Efforts for Beam Loss Mitigation in J-PARC Linac

Y. Liu, M. Otani, T. Miyao, T. Shibata, KEK/J-PARC, Ibaraki-ken, Japan A. Miura, JAEA/J-PARC, Ibaraki-ken, Japan

HB2018, Daejeon, Korea, 17-22 June 2018

Outlines

• Roadmap of J-PARC LINAC Intensity Upgrade

• Preparation for first beam of 60mA @J-PARC LINAC

• Intermediate results for 60mA studies

• Preparation for 3rd trial for 60mA

Conclusion and outlook

J-PARC Facility Layout at Tokai, JAEA Site

Multi-Purpose Facility

Joint Project between KEK and JAEA

J-PARC Linac Layout and Upgrade Scheme

181/190MeV → 400MeV: installation in 2013 Summer, accomplished in Jan., 2014 15/30mA → 30/50mA: on-line in 2014 Summer, accomplished in Oct. 2014

Roadmap of J-PARC LINAC Intensity Upgrade

181/190MeV → 400MeV: Jan., 2014
 Operation/Study 15/30mA → 30/50mA: Oct. 2014

→400MeV, 50mA: ready for 1MW from RCS (Demo:Dec.2014)

Design accomplished

• 40mA in Operation: Jan. 2016

Next step: $50 \rightarrow 60$ mA or/and $500 \rightarrow 600$ us: aim at 1.2/1.5MW@MLF

- 1st Trial of 60mA: Jul.5 2017: 68mA(IS) 62mA(MEBT1)
- 2nd Trial of 60mA: Dec.25,26 2017 60mA(DTL no accel.), 57mA(Li)
- 3rd Trial of 60mA: Jul.3, 2018
- 50mA in Operation: Oct. 2018

First 60mA Trial on Jul.5: Expected Problems and Countermeasures

Expected Problems

- Key point 1: DTL1
 Aperture(deformed by earthquake 2011)
 Output power might be near limit (coupler, klystron)
- Key point 2: emittance from ion source
- Current-dependency of RFQ output emittance
- Hardware damage due to errant beam

Countermeasures

- Simulations investigation
- Prepare lattices for possible larger emittance
- Limit beam pulse to 50us
- With chopped beam with thinning \rightarrow difficulties for monitors
- Lattice preparation for reduced tank level of DTL by 5, 10%→ acceptance and beam quality problem (not applied)
- Cavity conditioning before beam study → RFQ: 3h; DTL~ACS: 10h+

Updated Data of Ion Source

A typical measured transverse distribution at ion source test stand for 66mA $\epsilon_{tn.rms|95\%}$ =0.2646 mm*mrad 0.030 0.025 0.03 0.020 . . 0.02 5 _{0.015} ۔ سول 0.010 fа. 0.01 0.005 0.00 0.000 -10 -5 5 10 -10 -5 Ó 5 10 Ó 100 100 100 $- \varepsilon_{\rm rms}$ with all $-\varepsilon_{\rm rms}$ with all ϵ_{rms} with 95% 75 75 75 ϵ_{rms} with 95% 6ε_{rms} with 95% $6\epsilon_{rms}$ with 95% 50 - 50 50 10¹ 10¹ 25 -25 25 x'(mrad) y'(mrad) -0 -25 -25 -25 -50 -50 -50 -75 -75 -75 0.03 -100 -10010⁰ 5 10 0.00 0.01 0.02 -10-5 Ó 5 10 -10-50 x(mm) f[a.u.] y(mm)

Data by Dr. A.Ueno New J. Phys. 19 (2017) 015004

RFQ3 Simulation Study with Input of Measure Ion Source Distribution @66mA (by LINACSrfqSIM) (*unrealistic input for 30~50mA*)

			N (n	lorm. rm nm*mra		trace3d			Envelope (mm)	
	I(mA)	η	εх	εу	εz	εх	εу	εz	rx	ry
(For ref.)	30.	0.95	0.26	0.26	0.32	20.68	20.92	583.35	<i>2.16</i>	1.23
(For ref.)	40.	0.94	0.24	0.24	0.33	19.07	19.04	600.90	<i>2.15</i>	1.21
(For ref.)	50.	0.93	0.22	0.23	0.34	17.81	18.02	624.95	2.12	1.20
	60.	0.91	0.22	0.22	0.34	17.41	17.41	624.50	2.14	1.19
	70.	0.90	0.22	0.21	0.34	17.25	17.08	630.30	2 .15	1.20

Decisive effect of RFQ aperture limit at cost of transmission "Conservation of trans. envelope" Maybe no worry for downstream aperture

Lattice Preparation for DTL

A,B for reference

- (A)40mA lattice for operation
- (B)50mA lattice for beam study
- (C)40mA lattice scaled for 65mA envelope in DTL Same envelop @65mA with A @40mA, i.e. same phase advance
- (D)40mA lattice scaled for 65mA envelope in DTL (Quad+10%) Stronger transverse focusing in case of larger emittance
- (E)EP setting for 65mA

Notes

A,B for reference

- C,D scaled for 65mA with lattice A
 - Least change on DTL orbit
 - Aperture control

Pulse-operation of DTQ(∀>600A) is needed for (C) and (D)

Tune Diagram for Lattices C,D,E Based on Design Emittance

DTL1 DTQPS Settings

Structure for PPS-CT system

• Signal of MEBT1_SCT8 is led to ground level, separately integrated and obtained for particle counter for PPS-main and PPS-sub system

- •Similar for Signal of DTL2_SCT for PPS-backup system
- Purpose of PPS-CT correction
 - Correction for using of attenuator for avoiding of integrator over-range for 60mA beam test.
 - Correction for noise to the SCT from DTQ in case of pulse operation

"First" 60mA Beam @ MEBT1

"first" beam @MEBT1:SCT03A: 38mA → 61.3mA (Sol2++, Sol1--) J-PARC milestone! 62mA@MEBT1:SCT03B

Result of MEBT1 Q-scan Measurement

								30 -	$ 62 \text{ mA measured } x_5^* \text{ rms}; \varepsilon_{norm.rms.x} = 0.23$
								30 -	62mA measured y_5*rms; $\varepsilon_{norm.rms.y}$ = 0.27
G _{Q1}	G _{Q2}	C	3 _{Q3}	WSM03Ax	WSM03Ay	WSM03Bx V	VSM03By		RFQ simu. x_5*rms;ε _{norm.rms.x} = 0.22
-32.4	14	22.04	-14	4 -1	-1	1.0888	-1	20 -	RFQ simu. y_5*rms; $\varepsilon_{norm.rms.y}$ = 0.21
-32.4	14	22.04	-1	6 -1	-1	1.3251	-1		50mA measured x_5*rms; $\varepsilon_{norm,rms,x} = 0.22$
-32.4	14	22.04	-1) -1	-1	2.426	-1	10 -	50mA measured y_5*rms; Enorm.rms.y= 0.27
-32.4	14	22.04	-14.0	<u> </u>	-1	1.1417	-1	(F	
-32.4	14	22.04	-13.4	4 -1	-1	1.2921	-1	nrac	Lander Harrison
-32.4	14	22.04	-1:	2 -1	-1	1.7228	-1	y'(n	and the second s
-32.4	14	22.04	-18	3 -1	-1	2.012	-1	×	
-32.4	14	22.04	-2) -1	-1	2.6858	-1	-10	
-32.4	14	18	() - 1	1.8063	-1	-1		
-32.4	14	21.4) -1	0.55944	-1	-1	-20 -	
-32.4	14	24) -1	0.99798	-1	-1		
-32.4	14	25		о -1	1.365	-1	-1	-30 -	
-32.4	14	20.8	() -1	0.69665	-1	-1	-	-3 -2 -1 0 1 2
									x,y(mm)

14

Lesson from First Trial 60mA Beam Study on Jul.5, 2017

15

- 62mA@MEBT1: J-PARC milestone
- First DTQ pulse operation
- Transverse measurement of 60mA beam with MEBT1 Q-scan was done
- Transmission from IS to MEBT1-SCT3B ~90%
- RFQ output emittance/Twiss is close to expectation
- \rightarrow And not far from 50mA
- \rightarrow Beam loss in RFQ is acceptable for RFQ operation stability
- Chopped beam was used in orbit correction, not-fully chopped beam cause confusing results → un-chopped beam is required for orbit correction in the next study
- PPS backup-system correction is also needed

Strategy and Results of Second 60mA Trial on Dec.25~26, 2018

Improvements and Strategy Based on Lessons from first 60mA Trial

- Improved Q-scan scheme based on Jul.5 result
- Beam profile/position@MEBT1 scraper need to be checked
- MEBT1 Orbit correction condition set to: 50us/3MeV/no-chop
- Sufficient time for PPS correction (main/sub + backup) for DTQ pulse operation
- DTQ "DC mode" E-lattice will be used if MEBT1 Q-scan measurement reproduces Jul.5 result
- A special timing scheme is prepared for possible full acceleration of 50us unchopped beam. Basically chopped beam will be used after orbit correction

Comparison of MEBT1 Q-scan Measurement (Jul.5, Dec.25)

Emittance: X-plane became small(?)、Y-plane reproduced
→DTQ DC mode is possible("E"-lattice)

Comparison of MEBT1 Q-scan Measurement (60mA Jul.5, Dec.25 with simulation and 50mA)

Y-plane: well reproduced X-plane: emittance is unexpectedly small Trend is OK

"First Beam" 60mA through DTL (3MeV,chop off, MEBT1 scraper out)

Transmission: 3MeV(no chop scraper open), 400MeV(chop on scraper at norm.)

Results of Second 60mA Trial Beam Study on Dec. 25~26,2017

- 62mA@MEBT1 was reproduced
- MEBT1 Q-scan results was reproduced
- 60mA/3MeV beam transmitted DTL through DTL. (w/o chop, MEBT1 scraper open)
- 56mA/400MeV(w/ chop) was obtained at Li exit DTL~L3BT ~100%.
- Main beam loss: RFQ(halo from IS) MEBT1 scraper (need to be analyzed)
- Transverse matching was done for whole Linac, output emittance is 150% of 40mA operation.
- Longitudinal matching was not done
- Possible for RCS injection trial (with fine tuning)

Preparation of Third 60mA Trial on Jul.3, 2018

Strategy/Steps for Third 60mA Trial Study on Jul.3, 2018

• Reproducibility for ≤ 60 mA Beam

• Realization of 60mA Beam at whole Li Key point: RFQ/MEBT1 transmission optimization

Beam property measurement

RFQ transmission

- 40mA and 60mA measured transmission: ~6% difference
- Simulation (with water-bag) is inconsistent for 60 mA Reason for the different behavior: halo

Dr. Otani

MEBT1 transmission Dr. Otani

- 40mA and 60mA show similar drop at scraper
- And after buncher2, calibration? orbit?

Measured Horizontal Profile at MEBT1-Scraper

For 40mA operation This loss also exists A recognition "Owe to" low total transmission of 60mA

Knobs for Transmission

1 RFQ tank level: abnormal way

transmission vs. emittance

- e.g. +2% vs. +5% @tank +6% RFQ stability?
- 2 MEBT1 lattice optimization

Optimization rx@chopper, rx,y@ bunchers \rightarrow + rx@scraper + α

- 3 Increase Scraper aperture
 Extinction?
 +2% possible
- → Request for IS output current
 IS safety? Worse beam quality?
 Dec. 2017 (IS)68mA→(Li)57mA (83%)
 → Jul.2018 expectation: (IS)72mA→(Li)62mA (87%)

RFQ Simulation vs. Measurement

Improvement of Init. Twiss Assumption and Lattice Optimization

Lattice optimization constrain:

@chopper

on scraper (and max. of MEBT1)

Initial Twiss #1 (Org. RFQ simulation + transverse measurement)

Initial Twiss #2 (improved with new RFQ simulation verified by transverse/longitudinal measurement)

Simulation Comparison for case Initial Twiss #2

with "more Realistic" Init. Distribution (Improved RFQ simu.)

Simulated Distribution & Analysis @Scraper

Conclusion and Outlook

• J-PARC started to prepare for equivalent 1.2 and 1.5MW in near future Milestones:

first 62mA@MEBT1+measurement on Jul.5 2017;

first 60mA in DTL(no accel.) and 56mA in J-PARC LINAC on Dec. 2017;

3rd Trial of 60mA planned on Jul.3, 2018

- Halo of ~60 mA and its behavior was observed and understood by simulation Completely different from 40 mA Helpful for ion source development
- For the present ~60 mA beam, countermeasure within accelerator flexibility RFQ tank level
 Transmission optimization at MEBT1
- For lattice optimization for ~60mA, similar situation also found for 40mA
 Directly contribution to operation