

Study of the Transverse Mode Coupling Instability in the CERN Large Hadron Collider

D.Amorim, S.Antipov, N.Biancacci, X.Buffat, L.Carver, E.Métral

Many thanks to: T.Levens, A.Mereghetti, B.Salvant, M.Soderen, D.Valuch, LHC and Injectors Operations

61st ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams Daejeon, South Korea 18/06/2018

Outline

- Context and challenges
- The transverse mode coupling instability in the LHC
 - The transverse mode coupling instability
 - TMCI in the LHC era
 - TMCI in the HL-LHC era
- Conclusion and perspectives

Outline

- Context and challenges
- The transverse mode coupling instability in the LHC
 - The transverse mode coupling instability
 - TMCI in the LHC era
 - TMCI in the HL-LHC era
- Conclusion and perspectives

- More critical situation at lower chromaticities
- Different destabilizing mechanisms under investigation
 - Damper noise, coupling, optics errors, long range beam-beam, tail distributions...

The High Luminosity-LHC project

• More than a factor 2 peak luminosity compared to LHC

	LHC	HL-LHC nominal	HL-LHC ultimate
L_{peak} / 10 ³⁴ cm ⁻² s ⁻¹	2	5	7.5
$L_{int} / fb^{-1}/y$	50	262	325

• Increased bunch intensity, decreased beam emittance

	LHC	HL-LHC standard	HL-LHC BCMS
Energy / TeV	6.5	7	7
# of bunches	2544	2760	2748
N_b / 10^{11} p.p.b	1.2	2.3	2.3
$\varepsilon_{x,y}^{rms}$ / µm	2.5	2.1	1.7
σ_z^{rms} / cm	9	9	9

- Brighter beams will be a challenge for beam stability
 - Need to keep a factor 2 margin in HL-LHC

Stability in the HL-LHC era

- At top energy, the collimators are the main contributors to the impedance
 - 54 per beam, 11 in IR7 betatron cleaning region
 - In IR7: made of resistive materials (Carbon Fiber Composite), tightest gaps (<2mm)

TMCI threshold in LHC / HL-LHC

TMCI threshold in LHC / HL-LHC

- Need to know the single bunch stability limits
 - Transverse Mode Coupling Instability could be a single bunch intensity limitation
 - It could help understand the tighter stability margins at low chromaticities
 - HL-LHC situation could be more critical because of higher brightness beams
- Measurement of the tune-shift as a function of intensity to assess it
 - Simulations using the LHC and HL-LHC impedance models
 - Measurement in the machine: need to work with LHC operational constraints
- Can help understand the discrepancies between predictions and measurements
- Showcase the benefice of the impedance reduction for HL-LHC

Outline

- Context and challenges
- The transverse mode coupling instability in the LHC
 - The transverse mode coupling instability
 - TMCI in the LHC era
 - TMCI in the HL-LHC era
- Conclusion and perspectives

Two particle model of TMCI

- As the bunch intensity increases, two oscillation modes can couple
- The beam becomes unstable

https://github.com/PyCOMPLETE/PyHEADTAIL

https://nbviewer.jupyter.org/github/PyCOMPLETE/PyHEADTAIL-playground/blob/master/Transverse_Mode_Coupling_Instability/TMCI_2particle_model.ipynb

2018-06-18

Two particle model of TMCI

- As the bunch intensity increases, two oscillation modes can couple
- The beam becomes unstable

https://github.com/PyCOMPLETE/PyHEADTAIL

https://nbviewer.jupyter.org/github/PyCOMPLETE/PyHEADTAIL-playground/blob/master/Transverse Mode Coupling Instability/TMCI 2particle model.ipynb

2018-06-18

Head-tail signal in mode coupling

2018-06-18

Head-tail signal in mode coupling

2018-06-18

Outline

- Context and challenges
- The transverse mode coupling instability in the LHC
 - The transverse mode coupling instability
 - TMCI in the LHC era
 - TMCI in the HL-LHC era
- Conclusion and perspectives

- Simulations with the Vlasov solver DELPHI
 - Eigenvalues: mode frequency shift and growth rate
 - Eigenvectors: mode head-tail signal
- Operational collimators settings
- TMCI intensity threshold at $3 \cdot 10^{11} p. p. b$
 - Not currently reachable in LHC
- Increase the machine impedance to try reaching the threshold

- Increase the machine impedance
 - Bring in closer selected betatron cleaning collimators
- TMCI intensity threshold at 2 · 10¹¹p.p.b
 Intensity reachable in the LHC
- Machine chromaticity can only be controlled in a ± 2 units range

- Increase the machine impedance
 - Bring in closer selected betatron cleaning collimators
- TMCI intensity threshold at 2 · 10¹¹p.p.b
 Intensity reachable in the LHC
- Machine chromaticity can only be controlled in a ± 2 units range

- Increase the machine impedance
 - Bring in closer selected betatron cleaning collimators
- TMCI intensity threshold at 2 · 10¹¹p.p.b
 Intensity reachable in the LHC
- Machine chromaticity can only be controlled in a ± 2 units range

35

####

Simulation of TMCI in the LHC

- Use a slightly positive chromaticity
 - Ensure stability of mode 0
- No clear mode coupling between modes 0 and -1 anymore
- But tune-shift vs intensity slope is preserved

Tune-shift vs. intensity, Beam 1, horizontal plane Transverse mode coupling instability in LHC

- Measurement with 2 or 3 bunches per beam
 - Number limited by machine protection constraints
 - Bunch-by-bunch tune measurement
 - High precision measurement with the transverse damper stripline pickup (tune resolution: 10⁻⁵)
- Tentative to observe mode coupling by closing further the collimators

2018-06-18

Tune-shift vs. intensity, Beam 1, horizontal plane Transverse mode coupling instability in LHC

- Measurement with 2 or 3 bunches per beam
 - Number limited by machine protection constraints
 - Bunch-by-bunch tune measurement
 - High precision measurement with the transverse damper stripline pickup (tune resolution: 10⁻⁵)
- Tentative to observe mode coupling by closing further the collimators

2018-06-18

Tune-shift vs. intensity, Beam 1, horizontal plane Transverse mode coupling instability in LHC

- Measurement with 2 or 3 bunches per beam
 - Number limited by machine protection constraints
 - Bunch-by-bunch tune measurement
 - High precision measurement with the transverse damper stripline pickup (tune resolution: 10⁻⁵)
- Tentative to observe mode coupling by closing further the collimators

2018-06-18

D.Amorim, TMCI in the LHC, HB 2018

•

Tune-shift vs. intensity, Beam 1, horizontal plane Transverse mode coupling instability in LHC

- Measurement with 2 or 3 bunches per beam
 - Number limited by machine protection constraints
- Bunch-by-bunch tune measurement
 - High precision measurement with the transverse damper stripline pickup (tune resolution: 10⁻⁵)
- Tentative to observe mode coupling by closing further the collimators

Tune-shift vs. intensity, Beam 1, horizontal plane Transverse mode coupling instability in LHC

- Measurement with 2 or 3 bunches per beam
 - Number limited by machine protection constraints
- Bunch-by-bunch tune measurement
 - High precision measurement with the transverse damper stripline pickup (tune resolution: 10⁻⁵)
- Tentative to observe mode coupling by closing further the collimators

2018-06-18

Tune-shift vs. intensity, Beam 1, horizontal plane Transverse mode coupling instability in LHC

- Measurement with 2 or 3 bunches per beam
 - Number limited by machine protection constraints
- Bunch-by-bunch tune measurement
 - High precision measurement with the transverse damper stripline pickup (tune resolution: 10⁻⁵)
- Tentative to observe mode coupling by closing further the collimators

2018-06-18

Tune-shift vs. intensity, Beam 1, horizontal plane Transverse mode coupling instability in LHC

- Measurement with 2 or 3 bunches per beam
 - Number limited by machine protection constraints
- Bunch-by-bunch tune measurement
 - High precision measurement with the transverse damper stripline pickup (tune resolution: 10⁻⁵)
- Tentative to observe mode coupling by closing further the collimators

2018-06-18

Tune-shift vs. intensity, Beam 1, horizontal plane Transverse mode coupling instability in LHC

- Measurement with 2 or 3 bunches per beam
 - Number limited by machine protection constraints
- Bunch-by-bunch tune measurement
 - High precision measurement with the transverse damper stripline pickup (tune resolution: 10⁻⁵)
- Tentative to observe mode coupling by closing further the collimators

2018-06-18

Tune-shift vs. intensity, Beam 1, horizontal plane Transverse mode coupling instability in LHC

- Measurement with 2 or 3 bunches per beam
 - Number limited by machine protection constraints
- Bunch-by-bunch tune measurement
 - High precision measurement with the transverse damper stripline pickup (tune resolution: 10⁻⁵)
- Tentative to observe mode coupling by closing further the collimators

2018-06-18

Tune-shift vs. intensity, Beam 1, horizontal plane Transverse mode coupling instability in LHC

- Measurement with 2 or 3 bunches per beam
 - Number limited by machine protection constraints
- Bunch-by-bunch tune measurement
 - High precision measurement with the transverse damper stripline pickup (tune resolution: 10⁻⁵)
- Tentative to observe mode coupling by closing further the collimators

Outline

- Context and challenges
- The transverse mode coupling instability in the LHC
 - The transverse mode coupling instability
 - TMCI in the LHC era
 - TMCI in the HL-LHC era
- Conclusion and perspectives

- Show the benefits of low resistivity coatings for the betatron cleaning collimators
- Collimators resistive wall impedance scale as $\sqrt{\rho}/b^3$
 - Cannot replace all the collimators with low resistivity materials
 - Instead open the gaps to reproduce an equivalent HL-LHC impedance

- Show the benefits of low resistivity coatings for the betatron cleaning collimators
- Collimators resistive wall impedance scale as $\sqrt{\rho}/b^3$

 ρ : resistivity in $\Omega \cdot m$ b: gap in m

- Cannot replace all the collimators with low resistivity materials
- Instead open the gaps to reproduce an equivalent HL-LHC impedance

2018-06-18

Tune-shift vs. intensity, Beam 1, horizontal plane Transverse mode coupling instability in LHC

Outline

- Context and challenges
- The transverse mode coupling instability in the LHC
 - The transverse mode coupling instability
 - TMCI in the LHC era
 - TMCI in the HL-LHC era
- Conclusion and perspectives

Conclusions

Conclusions

- The LHC TMCI threshold was investigated with simulations and measurements
 - Measurement useful to assess the LHC impedance and stability model at low chromaticities
- Direct measurement in the machine is challenging because of operational and safety constraints
 - The TMCI threshold can be inferred by measuring the tune-shift versus bunch intensity
 - Simulations were performed to find a good parameters set for the measurement
- Highlighted the beneficial effect of low resistivity collimators for HL-LHC
 - Reproduced an equivalent HL-LHC impedance by changing the collimators gaps
 - Clear tune-shift reduction and inferred a TMCI threshold two times higher than for LHC
- Other effects that can act on the mode coupling are being investigated
 - Effect of the transverse damper
 - Landau damping in the mode coupling regime

Thank you for your attention

Backup

The HL-LHC stability model

- HL-LHC with LHC collimators: tight margins for BCMS beam ٠
- Impedance: 480 A out of 570 A for Ultimate scenario at $\beta^* = 41cm$. ٠
- Considering long ranges effect: no margin for Ultimate scenario ٠

The HL-LHC stability model

- HL-LHC with LHC collimators: tight margins for BCMS beam ٠
- Impedance: 480 A out of 570 A for Ultimate scenario at $\beta^* = 41cm$. ٠
- Considering long ranges effect: no margin for Ultimate scenario ٠

The HL-LHC stability model

- HL-LHC with LHC collimators: tight margins for BCMS beam ٠
- Impedance: 480 A out of 570 A for Ultimate scenario at $\beta^* = 41cm$. ٠
- Considering long ranges effect: no margin for Ultimate scenario ٠

Octupole threshold increases for thinner coatings

Mo: +20 A for Q' ~ 8-12

Cu: no significant difference for Cu around Q' ~ 10

The effect may be large at some chromaticities

S. Antipov

S. ANTIPOV, COLLIMATOR COATING THICKNESS

5

2018-06-18

TMCI in the LHC: measurement procedure

- Measurement goals
 - Infer the TMCI threshold by measuring the tune-shift vs intensity
 - Try to observe a mode coupling instability in the LHC
- 8h time slot on Sep. 15th to 16th 2017 night to perform the measurement
- Machine safety: each beam can not contain more than $3 \cdot 10^{11} p. p. b$
- Measurement procedure:
 - 1. Inject 2/3 bunches of different intensities, and ramp to top energy
 - 2. Bunch-by-bunch tune measurement: high precision tune measurement with the transverse damper stripline pickup (tune resolution: 10^{-5})
 - 3. Close the collimators to increase the machine impedance and repeat the measurement
- Tentative to observe mode coupling by closing further the collimators

TCSPM: low resistivity collimator prototype

- Collimator impedance scales as $\sqrt{\rho}/{b^3}$
 - ρ : resistivity in $\Omega \cdot m$
 - -b: gap in m
- To reduce the impedance
 - Decrease the resistivity
 - Increase the gaps
- A prototype collimator was installed in the LHC to test three different materials

TCSPM: tune shifts measurement

- On-line analysis of the tune-shifts for the three materials
- State of the art transverse damper control allowed to measure shifts of the order of $10^{-5}\,$

2018-06-18

TCSPM: tune shifts measurement

• The post-processing highlighted discrepancies with the impedance model used

D.Amorim, TMCI in the LHC, HB 2018

2018-06-18

Beam dynamics without collective effects

Beam dynamics with impedance effects

Transverse mode coupling instability

• For low bunch intensity, the oscillation modes are independent

Mode 0

Mode -1

2018-06-18

Effect of the transverse damper

SPS Q26, Resonator impedance Q'=0, $f_r \tau_b = 2.8$ No damper

2018-06-18

2018-06-18

D.Amorim, TMCI in the LHC, HB 2018

72
LHC Collimation system

D.Amorim, TMCI in the LHC, HB 2018

LHC collimation system principle

- A superconducting magnet can quench if $\sim 10^9$ particles hit it
- The collimators are here to intercept stray protons
- Because of their high energy, the intercepted protons create particle showers that need to be intercepted as well

2018-06-18

D.Amorim, TMCI in the LHC, HB 2018

LHC collimation system layout

LHC collimation system

D.Amorim, TMCI in the LHC, HB 2018