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Abstract
In the past years several studies, numerical and experimen-

tal, have been carried out for enlightening the effect of space
charge on stored bunches. The last effort in this quest has
regarded the space charge effects on the third order coupled
resonance. Experimental studies have been performed at
the CERN-PS and a vast simulation effort has followed to
interpret the experimental findings. The interpretative base
of the analysis relied on: 1) the knowledge of the mechanism
of the periodic resonance crossing induced by space charge,
which has been identified and confirmed in previous decade
2000-2010; 2) the new revival of the nonlinear dynamics of
coupled resonances, alias the fixed-lines. The analysis of the
experiment combined together both the mechanisms. How-
ever, the discussion made use of an intuitive ansatz based
mainly on physics arguments. We shortly present here the
re-derivation of the theory of nonlinear dynamics including
space charge, and show that we retrieve the concepts used
to discuss the analysis of the experiment of the 3rd order
coupled resonance.

INTRODUCTION
It is here presented the effect of the space charge in the

theory of resonances. The effect of space charge on the beam
dynamics in coasting beams is introduced with the following
two assumptions:

1) The beam is assumed in a stationary state, i.e. the beam
distribution does not change during storage;

2) The effect of a resonant dynamics is assumed small so
to not alter significantly the beam distribution or beam
intensity so that the assumption 1) remains valid.

We next briefly discuss these two ansatzes in order to clarify
the implications and limits they introduce.

The ansatz 1) means the beam is matched and not sub-
jected to coherent effects that destabilize it. On the other
hand, any coherent effect which is stationary and makes
the beam envelope oscillate with regular periodic motion
can be regarded as included in point 1) as far as it concerns
the direct space charge. The ansatz 1) allows to discuss
the effect of space charge as created by an “external force”
so that in this condition is viewed as an “incoherent” force.
Usually the presence of coherent effects is discussed with ref-
erence to plasma “coherent effects” such as the Debye length
λD =

√
ε0γ3mṽ2

x/(q2n), where q is the particle charge, m
the particle mass, and n the particle density, and ṽx is the
rms “thermal” velocity component. The Debye length is a
characteristic length of a collective motion of charged par-
ticles which create a shielding of local perturbations in a
plasma.
∗ This work was supported in part by the European Commission under the
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If λD is much larger than the inter-particle average dis-
tance lp the space charge force can be treated as a smooth
applied force. If in addition λD is much bigger than the rms
beam radius a0 the single particle behavior dominates the
dynamics (see in Ref. [1]). For a matched beam the ther-
mal velocity is ṽ2

th
= v2

0 ε̃x/βx , and for an axi-symmetric
Gaussian beam we find

λ2
D(r) =

Qx0
4|∆Qx |

a2
0e

1
2

r2

a2
0 , (1)

where Qx0 is the machine tune, ∆Qx is the incoherent space
charge tune-shift, and r =

√
x2 + y2. As at each r one finds

a specific λD(r), the most relevant for the Debye collective
shielding is the smallest, which is found at r = 0. We attempt
to capture the incoherent nature of space charge defining
a “parameter of incoherence” as I = λD(0)/a0: the larger
I the more “incoherent” the direct space charge is. From
Eq. (1) we find

I =

√
1
4

Qx0
|∆Qx |

,

so if |∆Qx |/Qx0 = 0.25 the collective nature of space charge
may invalidate ansatzes 1), 2) as I = 1. We instead may
“safely” use the ansatzes for a space charge yielding the more
conservative I = 3, corresponding to |∆Qx |/Qx0 = 0.027,
a typical value for standard operational regimes in circular
accelerators. This is confirmed by numerical studies for
Gaussian beams [2], which have shown that space charge
collective resonances are not observed. A further argument
to develop the theory of resonances with space charge using
a model with ansatz 1) and 2) is that long term PIC simu-
lations still suffer of intrinsic noise heating [3–6] although
the recent significant progress in creating symplectic PIC
algorithms [7].

In ansatz 2) the resonant dynamics is here discussed for
a generic sum resonance, which can be generated by mag-
net errors, or by the incoherent space charge itself as the
beam undergoes envelope oscillations driven by the machine
optics. The requirement that a resonance does not change
the beam distribution is satisfied when the number of beam
particles affected by the resonance is small with respect to
the total number of beam particles. This means it is assumed
only a small fraction of the beam is transported around in
the phase space by a resonance. In this treatment we do not
consider dynamical effects such as the change of the space
charge tune-spread, which would feed back on the dynamics
of resonant particles. This approach has a validity when
global effects induced by incoherent effects are small on the
time scaled considered. A similar assumption is adopted in
case of beam loss: we assume the losses to be small on the
time scale considered.
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RESONANCES

The theory of resonances in accelerators has got a long his-
tory. It started in the 50s with [8], and the work of Schoch [9].
The theory was based on a perturbative approach to the
Hamiltonian theory. In more recent years the normal form
approach has followed the advent of computers and numer-
ical physics [10, 11]. The more popular application of the
theory led to the development of driving term methods to
measure and correct resonances [12].

The original theory was developed with perturbative meth-
ods, and originates a complex structure of patterns in the
phase space. Without space charge, coupled resonances
in phase space have a particular pattern also called fixed
lines [13]. These mathematical objects created by nonlinear
coupled resonances were not extensively used for controlling
accelerators beams. In literature the reference to fixed lines
trace back to the 80’s [14, 15]. However, the recent study
in Ref. [16] have shown that fixed lines play a fundamental
role in determining the dynamics of halo formation in high
intensity beams. A recent study of the resonant coupled
dynamics is discussed in [17, 18], and is here modified to
include space charge.

The approach starts from the single particle Hamiltonian,
which is composed by the quadratic potential H0 and the per-
turbation part H1 which has higher order and is originated by
the presence of nonlinear errors in magnets. The solution of
the equations of motion for the Hamiltonian H0 is expressed
in the Courant-Snyder form x =

√
βxax sin(ψx + ϕx), simi-

larly for the y coordinate. For convenience the single particle
invariants are re-scaled as âx = ax/εx, ây = ay/εx to the
εx rms beam emittance. The dynamics of particles under
the full Hamiltonian H0 + H1 is derived by keeping the
Courant-Snyder form, but allowing the quantities âx, ϕx to
vary. The treatment leads to a new set of canonical equations
in the quantities âx, ϕx, ây, ϕy controlled by the Hamiltonian
H1. These equations are exact, and usually are not easily
solvable. However, the mathematical formulation of the
canonical equations allows a representation of the problem
in terms of a harmonics series. Each term of the series is
an oscillating function which frequency is a combination
of the machine tunes and the harmonics number m of the
distribution of the machine nonlinear errors.

By setting the machine tunes Qx0,Qy0 such that the fre-
quency of some harmonics becomes “slow”, which happens
when Qx0,Qy0 are set close NxQx + NyQy = m for the ex-
cited resonance, the system of differential equations acquires
a dynamics in which the average motion is controlled mainly
by the “slow harmonics”. It is then used a simplifying ansatz
of neglecting all the “fast” oscillating harmonics so to ob-
tain an “easier” set of canonical equations. This is clearly a
substantial approximation as all harmonics are neglected but
the slowly varying one; for weak errors this approach yields
acceptable approximation for modeling the main resonance.
After using a canonical transformation to remove the time

dependence from the slowly varying Hamiltonian, we find

H̃1 =
4
εx
ρãnx/2

x ãny/2
y cos[Nx ϕ̃x + Ny ϕ̃y + α] +

+(ãxtx + ãyty)
2π∆r0

L
+ Ṽ (2)

where the ·̃ means that the canonical variables are the
new one. A nice feature of this transformation is that
ãx = âx, ãy = ây . The parameters tx, ty are defining the
canonical transformation and are subject to the condition
Nxtx + Nyty = 1. This means there are infinite canonical
transformations to remove the time dependence in the slowly
varying Hamiltonian. The coefficients ρ ≥ 0, α are the am-
plitude and phase of the driving term, which is obtained by
the Fourier transform of the resonant term of the perturbing
Hamiltonian H1. The factor 4/εx arises from the particular
choice of normalization used to define âx, ây . The slowly
varying potential Ṽ is here only function of the quantities
ãx, ãy , which have contributions from all nonlinear compo-
nents in magnets. Essential in the dynamics is the distance
from the resonance ∆r0 = NxQx0+NyQy0−m. This expres-
sion is not an arbitrary definition, but arises directly solving
the dynamics of slowly varying harmonics.

The stationary solution of the canonical equations for the
variables ãx, ϕ̃x, ãy, ϕ̃y is a fixed point alias a “fixed line”,
which requires a specific condition on the values of the slowly
varying coordinates. For example, for the third order normal
resonance in absence of space charge it has already been
shown that ãx, ãy of any fixed line is given by

ãx =
1
16

[
|∆r0 |εx

R2ρ

]2
(1 − tx)2 (3)

ãy =
1
4

[
|∆r0 |εx

R2ρ

]2
tx(1 − tx) (4)

with 0 ≤ tx ≤ 1, and R the accelerator average radius. The
projection in the physical coordinates x, x ′, y, y′ of a fixed
line leads to the shapes shown in Fig. 1. The important
aspect, somewhat expected by the intuition, is that the am-
plitude of the fixed lines is related to the distance from the
resonance. The stability of resonances, alias the fixed lines,
is given by the secondary frequencies, namely the frequency
of oscillations of ãx, ãy around the stationary solution. For
imaginary frequencies the fixed line becomes unstable.

A graphic representation of the set of fixed lines is given
in Fig. 2. The curve shows the collection of stable and
unstable fixed lines. Note that in this computation there is
no additional source of amplitude dependent detuning.

RESONANCES AND SPACE CHARGE
Under the ansatz 1) and 2), the transverse space charge

potential can be written in the analytic form

Vsc =
K
2

∫ ∞

0

exp[−0.5T(t)] − 1
(a0 + t)1/2(b0 + t)1/2

dt (5)

with T(t) = x2/(a2
0+t)+y2/(b2

0+t). The quantities a0, b0 are
the rms sizes matched with the optics structure of the circular
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Figure 1: Fixed-line projections in normalized coordinates.
The parameter q can be 0,1 and its value is taken to allow
the existence of the fixed line.

machine, namely a2
0 = βx(s)εx, b

2
0 = βy(s)εy . The rms sizes

a0, b0 exhibit the s dependence deriving from the accelerator
structure and so does Vsc . This potential generates a Gaus-
sian transverse distribution ∝ exp[−0.5(x2/a2

0 + y2/b2
0)]. It

can be proven that the “slowly varying potential” generated
by space charge can be retrieved from Eq. (5) and has a form
Ṽsc(ãx, ãy) function of the normalized action ãx, ãy only.

This potential enters in Eq. (2) and affects the solution of
the stationary values of the canonical variables ãx, ϕ̃x, ãy, ϕ̃y .

The Fourier transform of Vsc allows to retrieve the driving
terms excited by space charge ρsc, αsc . So one can find
the situation that space charge excites a resonance and also
creates the amplitude dependent detuning fixing the position
of the fixed lines. We do not discuss here this particular
case.

The resonances are characterized by the condition Nx ϕ̃x+
Ny ϕ̃y + α = πq, with q and integer and by the conditions

tx
∆r0
R
+
∂Ṽ
∂ãx
' 0 (6)

ty
∆r0
R
+
∂Ṽ
∂ãy
' 0 (7)

0
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ãx/
{

1
16

[
|∆r0 |εx
R2ρ

]2
}

ã y
/

{ 1 16

[ |∆ r0|
ε x

R
2ρ

] 2}

Figure 2: Collection of all fixed lines. In black the stable
fixed lines, in red the unstable fixed lines.

It can be proven that these two conditions are necessary and
sufficient to the condition

∆r0
R
+ Nx

∂Ṽ
∂ãx
+ Ny

∂Ṽ
∂ãy
' 0. (8)

In addition it can be proven that R ∂Ṽ
∂ãx
= ∆Qx(ãx, ãy) is

the space charge induced amplitude dependent incoherent de-
tuning. (similarly for the other plane). We therefore find that
the condition for reaching a resonance, namely a stationary
solution of the canonical equations in the time-independent
set of coordinates, is given by

∆r0 + Nx∆Qx(ãx, ãy) + Ny∆Qy(ãx, ãy) ' 0. (9)

This result is not an ansatz but a direct consequence of
the canonical equations of the slow variables. We can use
this result to define an extension of the concept of amplitude
dependent detuning with the expression

∆r (ãx, ãy) = ∆r0 +

+Nx∆Qx(ãx, ãy) + Ny∆Qy(ãx, ãy) (10)

which is an “amplitude dependent resonance detuning”, now
defined for resonances of any order: the resonance condition
is met for ãx, ãy such that ∆r ' 0. This result confirms and
gives a theoretical ground to the discussion carried out in
Ref. [16]. From Eq. (10) it is evident that there is a maximum
resonance detuning Dr ,sc = Nx∆Qx(0,0)+Ny∆Qy(0,0) due
to space charge. The quantities ∆r (ãx, ãy), Dr ,sc determine
the location of the resonance in presence of space charge.
The symbol ' in Eqs. (6), (7) and (8) is used because we
have neglected the contribution of the resonant term in the
Hamiltonian. This is equivalent to assume that the driving
term ρ is small.

Note that Eq. (10) depends on the two normalized actions
ãx, ãy , and it may seem strange. However this is not the
case, in fact, there are infinite fixed lines, each identified
by a parameter: for example for the case of the 3rd order
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Figure 3: Collection of all fixed lines for a high intensity
beam with parameters ∆r0 = 0.056, Dr ,sc = −0.174.

resonance with no space charge the parameter is tx in the pa-
rameterization given by Eqs. (3) and (4). A more general pa-
rameterization makes use of the invariant Ny ãx = Nx ãy +C
characterizing the dynamics of the slowly varying Hamilto-
nian. For the third order resonance, fixing tx is equivalent to
fix C. When space charge is included, the parametrization
of the fixed lines is more complex and not expressible in a
simple analytic formula as in Eqs. (3) and (4). Nevertheless,
once C is fixed, it means a specific correlation is chosen in
the space of the actions ax,ay and the resonance detuning
∆r defined in Eq. (10) allows to determine the fixed line
associated to C.

Therefore for any C the condition ∆r = 0 allows to esti-
mate the location of the associated fixed line. As an example
we show the effect introduced by the space charge on the
collection of all the fixed lines shown in Fig. 2 for the case of
the third order resonance. The result is shown in Fig. 3 for
∆r0 = 0.056, Dr ,sc = −0.174 corresponding to the settings,
beam sizes, and space charge tune-shifts of the CERN-PS
measurements in Ref. [16].

A comparison of Fig. 3 with Fig. 2 shows that space charge
stabilized all unstable fixed lines, and changed dramatically
the shape of the curve in the neighborhood of ãx = 0. A di-
rect comparison of the values of ãx, ãy is not possible as the
sizes of Fig. 2 scale with ∆r0 and go to zero for ∆r0 → 0. In-
stead in presence of space charge, if ∆r0 → 0 the collection
of fixed lines in Fig. 3 becomes larger and larger. However,
qualitatively, from the pattern in Fig. 3 we learn that space
charge changes the direction of the black curve in Fig. 2 and
brings it to the point ãx = 0, ãy ∼ [|∆r0 |εx/(R2ρ)]2/16.

HIGH ORDER RESONANCES WITH
SPACE CHARGE

The theoretical approach here discussed allows the com-
putation of the fixed lines in presence of space charge for res-
onances of any order and arbitrary strength of space charge
(in the range of circular machines). We consider for con-
venience of demonstration the scenario of Ref. [16]. We

keep the space charge tune-shift so Dr ,sc = −0.174, and
∆r0 = 0.056. This is reached by changing the machine tunes
Qx0,Qy0 and setting it above the resonance of choice, that
is we require 0 ≤ −∆r0/Dr ,sc ≤ 1.

In Fig. 4 we show two examples of high order resonances
as Poincaré surface of section for fixed lines defined by the
parameter C = 0. In Fig. 4 top we show x − y projection of
the fixed line for the 4th order skew resonance Qx+3Qy = N ,
the strength of the octupole has been artificially enhanced
so to enable to the nonlinear tracking the resolution of the
resonance. Black dots are the result from the analytic theory;
red the dots are the particle positions obtained from tracking
turn after turn. The bottom picture shows the 7th order
normal resonance 5Qx + 2Qy = N . For sake of comparison
we also show in Fig. 5 the fixed line for Qx + 3Qy = N , but
C = 20. Comparing Fig. 4 top with Fig. 5 it is visible the
change in aspect ratio of the fixed-line according to the value
of C. However note: the topology of the two curves remain
the same.

SUMMARY
In this proceeding we have shortly presented the theory

of resonances with space charge. We have shown that the
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Figure 4: Fixed lines type C = 0 in a high intensity beam
with ∆r0 = 0.056, Dr ,sc = −0.174. On the top pic-
ture the resonance is Qx + 3Qy = N , bottom picture for
5Qx + 2Qy = N .
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Figure 5: Fixed line for C = 20 for a high intensity beam
with parameters ∆r0 = 0.056, Dr ,sc = −0.174.

prediction of resonant structures in phase space is possi-
ble under a general ansatz. We confirm from a more solid
theoretical ground the intuitive approach used in previous
work making use of the “resonance detuning”. The com-
plexity of the dynamics remains considerable, but in spite
of this an analogy with the one dimensional treatment of
resonances and space charge is possible. The amplitude
dependent detuning can be generalized with the amplitude
dependent “resonance detuning” ∆r (ãx, ãy) and used as a
tool for predicting the location of fixed lines

The comparison of particle tracking with the predictions
of the theory shows good agreement (Fig. 4, Fig. 5), and this
encourages to consider this approach useful to reach quick
results to the problem of the periodic resonance crossing
induced by high intensity bunched beams stored for long
term. The material here presented does not allow a complete
discussion of the consequences of the theory and its limits.
This subject will be part of a future publication.
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