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Abstract
Transport of high-intensity beams over long distances can

be restricted by space-charge fields which can lead to the
beam emittance growth and particle losses in accelerators.
The lost particles cause serious radioactivation of the accel-
erator structure and disturb the proper propagation of the
beam. The space-charge fields can be calculated by using
Poisson’s equation from the charge density profile. There
are several ways to focus the charged particles in acceler-
ators, but we are going to consider a periodic solenoidal
magnetic focusing field. For the Kapchinskij-Vladmirskij
(K-V) beams, the space charge field is linear but the envelope
can be mismatched and have parametric resonances of the
envelope instabilities particularly in periodic solenoid fileds.
The perturbed oscillations of the core and test particles can
generate resonances following by the halo formations. Also,
charge non-uniformity can make halos because of the non-
linear space charge force.

INTRODUCTION
High-intensity charged particle beams can be used in var-

ious kinds of research like astrophysical nuclear reaction
experiments, finding new particles in a standard model, ap-
plication for cancel treatment and fusion material test such as
International Fusion Materials Irradiation Facility (IFMIF).
During the transport of the high-intensity beams which are
space charge dominated, halo particles can be generated by
the envelope mismatch [1] or the non-uniformities of charged
particle distributions [2, 3]. We are going to describe the
halo formations of uniform density beams whose core is
not matched, and Gaussian density beams on the matched
condition. To do that, in this paper, we just deal with the
periodic solenoidal focusing field which has advantages over
other focusing methods that it’s much simpler and cheaper in
the experimental aspect, rotationally symmetric, and more
efficient in terms of beam emittance control [4]. Also it is
more suitable for the numerical analysis using the smooth
approximation [5, 6].

TRANSVERSE BEAM DYNAMICS UNDER
A PERIODIC SOLENOID FOCUSING

A longitudinal solenoid focusing function can be ex-
pressed by κz(s) = κz(s + S) = q2B2

z (s)/4γ2
b
β2
b

m2c4, where
Bz(s) = Bz(0, s) is the magnetic field on the z axis, S is
the period of the focusing field. For a simple model, it’s
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assumed that κz(s) = κz(0) = const . when 0 ≤ s ≤ η
2 S &

S(1− η2 ) ≤ s ≤ S, and κz(s) = 0 when η
2 ≤ s ≤ S(1− η2 ) [5].

Envelope Equation
Wth the dimensionless parameters and variables definded

by s/S → s, rb/
√
εS → rb, S2κz → κz, and SK/ε → K ,

the normalized envelope equation for a symmetric envelope
radius rb becomes [5–8]

d2rb(s)
ds2 + κz(s)rb(s) −

K
rb(s)

−
1

r3
b
(s)
= 0, (1)

where ε is the beam emittance and K = 2qλ/γ3
b
β2
b

mc2 is
the normalized beam perveance in which λ is the line charge
density of the beam. The normalized vacuum phase advance
over one axial period of such a focusing field is given approx-
imately by σ0 =

∫ 1
0

√
κz(s)ds =

√
ηκz(0), and normalized

depressed phase advance which is considered as the degree
of the space charge force is given by σ =

∫ 1
0

ds
r2
b
(s)

.

Equation of Motion of a Charged Particle
In order to use the particle-core model for the study of halo

formations, we will only deal with the transverse particle
motions in the transverse phase space (x,y directions) and
neglect the longitudinal effects (z or s direction) of space
charge force and acceleration of the particles.

The dynamics of charged particles in the simple solenoid
focusing model is easily analyzed in the Larmor frame [9]
which rotates with the Larmor frequency around the axis of
the solenoid. In Larmor frame, the equation of motion of a
charged particle, with the space charge force (Fsc) is

x ′′(s) + κz(s)x(s) − KFsc(x, rb) = 0, (2)
where Fsc(x, rb) = x(s)/r2

b
(s) for x(s) < rb(s) and 1/x(s)

for x(s) > rb(s) for the uniform density beams.
However in real frame, with nonzero canonical angular

momentum of the particles, the generalized equations of
motion of a charged particle under the periodic solenoid
field can be expressed by [9]

x ′′(s) − 2
√
κz(s)y′(s) −

K
2

Fsc,x(x, y) = 0, (3)

y′′(s) + 2
√
κz(s)x ′(s) −

K
2

Fsc,y(x, y) = 0, (4)

which are coupled between x and y directions and the longi-
tudinal acceleration term (γ′) is neglected. For simple case
of zero canonical angular momentum, the coupled equations
become a simple form in radial direction r, which is

r ′′(s) + κz(s)r(s) −
K
2

Fsc,r (r) = 0. (5)
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ENVELOPE OSCILLATIONS
In this section, we will see the envelope instabilities that

explore mismatched, nonlinear resonances and chaotic be-
haviors in the beam envelope oscillations [5].

With solving Eq.(1), we plotted the envelope oscillations
in phase plane rb − r ′

b
, with different values of space charge

perveance and focusing parameters. All points in the figures
are plotted in every S lattice period (Poincare surface of
section plots) for the trajectories of many different envelope
initial conditions for propagation over 300 lattice periods.

Figure 1 shows the envelope motions without the space
charge term, i.e, K = 0. The values of normalized param-
eters correspond to η = 1/6, κz(0) = 3.79(σ0 = 45.5◦).
As you can see in the figure, there’s a fixed point on the
phase plane which represents the matched beam. It corre-
sponds to a periodic solution to the envelope equation in
every lattice period and the corresponding initial condition
is rb(0) = 1.16, r ′

b
(0) = 0. Around the fixed point, there are

infinite number of invariant tori, each of which describes a
mis-matched beam whose envelope exhibits stable betatron
oscillations about the envelope of the matched beam because
of the initial mismatch.

On the other hand, with non zero perveance, the space
charge effects induce parametric resonances as well as the
matched and mismatched oscillations as shown in Fig.2.
Here, the values of normalized parameters correspond to
K = 3, η = 1/6, κz(0) = 3.79(σ0 = 45.5◦) and the initial
condition of a fixed point is rb(0) = 2.3, r ′

b
(0) = 0. There

coexist 4-th and 5-th order resonances in this phase space.
The 5-th order resonance corresponds to the five elliptical
regions in the vicinity of the fixed point. It has betatron wave
number of 2π/5, so a trajectory in one of the five islands
will hop from one to another island until it comes back to
its starting point after five turns [10].

For sufficiently large perveance values, the envelope os-
cillations become chaotic for some mismatched conditions.
The phase space contains chaotic orbits which are very sen-
sitive to initial conditions [5].

HALO FORMATIONS IN A PARTICLE
CORE MODEL

From now, we will see the halo formations of charged
particles in the particle-core model.

Halo fromation of high-intensity beams which are space
charge dominated can lead to beam emittance growth and
particle losses in accelerators [11–14], and there are many
reasons for the halos during the beam transport.

• Envelope instabilites related to the mis-matched and
the n-th order parametric resonances (in the previous
section).

• Halo formations generated by the resonances between
the core oscillation and that of test particles (Particle-
Core model) [1, 2, 15–17].

• Charge non-uniformity that induce the non-linear space
charge force [3, 18].

We are going to describe the halo formations and chaotic
motions both in the uniform charge density beams that are
not matched, and non-uniform (Gaussian) charge density
beams that are matched in the solenoid focusing field. To do
that, we solved the equations of motion in our simulation to
understand the motions between the core and test particles.

Particle Core Model of Uniform Density Beams
By solving Eq.(2) for the uniform density beam, the trajec-

tories of many test particles with different initial positions
are plotted in the phase plane in every lattice period for
propagation over 300 lattice periods (see Fig.3).

Figure 3(a) shows the motion of test particles in the case of
matched beam. They have stable circular or elliptical orbits
in the phase space. But in the case of the mis-matched beam
[see Fig.3(b)], we can see irregular trajectories around the
center and chaotic motions that move in and out of the central
region. Particularly, for the 5-th order resonant instability
[see Fig.3(c)], particles are plotted in every 5 lattice period
because such core oscillations have 2π/5 frequency and
return to the starting point every 5 lattice period. We can see
resonant trajectories symmetrically generated in the space.

Outside the beam boundary, particles experience a nonlin-
ear force proportional to 1/x and it is independent of the size
of the beam. But when the test particles pass through the
beam core, they are decelerated by the space charge force as
they approach the core and accelerated as they leave the core.
Also the space charge force within the beam boundary is
dependent of the size of the envelope radius. Therefore, the
unstable core oscillations like mis-matched and n-th order
parametric resonances induce non-linear space charge forces
to the charged particles and generate resonances accompa-
nied by the chaotic and halo formations.

Particle Core Model of Gaussian Density Beams

ρ(®x) =
λ

2πσxσy
exp(−

x2

2σ2
x

−
y2

2σ2
y

) (6)

If a charge density of the beam has Gaussian distribu-
tion [Eq.(6)], the corresponding electric fields calculated by
Poisson’s equation are [19, 20]

Esc,x(x, y) = 2λ
1 − e−r

2/σ2
r

r2 x, (7)

Esc,y(x, y) = 2λ
1 − e−r

2/σ2
r

r2 y, (8)

where r2 = x2+y2. In this equation, σr is the rms radial size
of the Gaussian profile and it corresponds to σr = σr (s) =
rb(s)/

√
2, where rb(s) is the envelope radius coming from

the initial condition of the matched beam by solving the
Eq.(1). rb(s)/

√
2 is the rms size of the matched beam with

uniform density profile and it’s same with σr (s) based on the
concepts of Equivalent beams [9]. Therefore, Eqs.(7) and
(8) can be substituted into the Eq.(3) and (4) so that the space
charge terms become Fsc,x = Esc,x/λ and Fsc,y = Esc,y/λ.
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Figure 1: Envelope oscillations on phase plane of rb − r ′
b
. The values of parameters correspond to K = 0, η = 1/6, κz(0) =

3.79(σ0 = 45.5◦). A fixed point on the phase space shows a periodic solution in which initial conditions are rb(0) =
1.16, r ′

b
(0) = 0. Around the fixed point, there are infinite number of invariant tori having stable betatron oscillations.

Figure 2: Envelope oscillations on phase plane of rb − r ′
b
. The values of parameters correspond to K = 3, η = 1/6, κz(0) =

3.79(σ0 = 45.5◦). The 5th order resonance corresponds to the five elliptical regions in the vicinity of the fixed point and it
has betatron wave number of 2π/5.

For symmetric case with σx = σy = σr/
√

2 in Eq.(6), the
space charge term in Eq.(5) becomes Fsc,r = 2 1−e−r/σ2

r

r .

First, the radial motions of particles in the symmetric
Gaussian beams are shown in Fig. 4. For zero perveance,
they have uniform and stable oscillations. For K=3 and tune
depression η ≡ σ

σ0
= 0.26, phase space in Fig. 5 shows a

region of two concentric curves centered on the fixed points
symmetrically located on the x axis. This kind of orbits can
be also seen in the resonant motions of mis-matched core and
test particles in the uniform density beam under a continuous
focusing field [1]. And outside the outer separatrix, particles
form quasi-elliptical trajectories. Figure 6 is in different
parameters with 60 or 90 degrees of phase advance. There’s
a similar separatrix symmetrically located on the x axis
around a center. But outside region, many other resonant
trajectories appear as the distance from the center increases.

For more detailed analysis of the Fig. 6, we expand the
exponential part of Fsc,r in Eq.(5) by using the Taylor ex-
pansion. If we just keep the linear and 2nd order terms,
the 4-th order resonance between the matched core (e.g,
σenv = 360◦) and test particles can be generated when the
phase advance of the particle is about 90◦ (e.g, σ = 90◦)
[21, 22]. The first figure of Fig. 7 shows the 4-th order reso-
nance around the center of the phase plane. If we add the
higher order terms more and more (see middle and last fig-
ures in Fig. 7), we can see similar trajectories near the center
but more resonances are generated as distance increases and
become closer to the Fig. 6.

Next, in the case of non-zero canonical momentum un-
der solenoidal focusing field, we have to solve the coupled
equations of motion [Eq.(3) and (4)] to see particle motions
in real frame. Figure 8 shows the trajectories of many test
particles plotted in x-y phase plane with the scale of matched
beam radius. A black circle with radius 1 on the x-y plane is
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Figure 3: Test particle trajectories of uniform density beams. The corresponding parameters are K = 3 and (a) σ0 = 45.5◦,
(b) σ0 = 45.5◦, (c) σ0 = 45.5◦. Beam core oscillation is in matched, mis-matched, and the 5th order parametric resonance
condition, respectively.

Figure 4: Test particle trajectories of the symmetric Gaussian
charge density beam. The corresponding parameters are
K = 0, σ0 = 45.5◦, σ = 45.5◦.

Figure 5: Test particle trajectories of the symmetric Gaussian
charge density beam. The corresponding parameters are
K = 3, σ0 = 45.5◦, σ = 12◦.

Figure 6: Test particle trajectories of the symmetric Gaussian
charge density beam. The corresponding parameters are
K = 2.3, σ0 = 115◦, σ = 90◦.

the envelope boundary of the beam. For a detailed study of
the test particle motions, let’s see a single particle motion.
When a single particle is initially loaded within the beam
boundary (see Fig. 9), it takes the chaotic orbits that lead to
the escape of particle from the beam interior to outside. But
as you can see in (c), at very close to the beam boundary,
charged particles doesn’t go inside the region at which they
initially loaded. When a single particle is initially distributed
outside the beam boundary (see Fig. 10), it also doesn’t go
inside the beam interior and doesn’t go farther than the par-
ticles of Fig. 9. They have chaotic trajectories around the
region where they first are.

Test particle orbits can take different kinds of chaotic
trajectories depending on the different classes of initial con-
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Figure 7: Test particle trajectories of the symmetric Gaussian charge density beam by using Taylor expansion of the
exponential part in the space charge force. The corresponding parameters are K = 2.3, σ0 = 115◦, σ = 90◦. (First) n ≤ 2
terms generate 4-th order resonance around the center. And add the higher order terms (middle) n ≤ 50, (last)n ≤ 100.

Figure 8: By solving the coupled equations of motion, many
test particles are plotted in x-y phase plane with the scale of
matched beam radius rb.

ditions in phase space. They can take orbit that is chaotic
but stays confined within the outer beam boundary and also
leads to the escape of particles from the beam interior to
outside, which can become halo particles. When the inside
particles go closer to the beam boundary, it tends to be ac-
celerated by the space charge force and resonated with the
vibrating beam core so that they can get energy to go farther
and make halos.

CONCLUSION
In the high-intensity charged particle beam dynamics, the

space charge effects are one of big considerations in terms of
the beam emittance growth and halo formations during the
beam transportation. Even though the space charge force is
linear in the uniform charge density (K-V beam), there can be

a mis-matched core motions because of the initial mismatch.
Then the unstable oscillations of the core can generate res-
onances with the test particles, which can be described by
using the particle-core model simulations. Especially un-
der the periodic solenoid magnetic field, the higer order
envelope resonances are also generated. For non-uniform
charge density beams (Gaussian), the space charge force is
non-linear so that it affects the particle motions even though
the core is matched. To see the non-linear effects on the
halo formations, we solved the radial (in the case of sym-
metric Gaussian beam) and coupled equations of motion
with many test particles and a single particle motion. The
particle-core model doesn’t consider the self-consistency
that can be achieved only from the Particle-In-Cell (PIC)
simulations. Moreover, there’s no longitudinal effects of
the space charge force and acceleration. So we can study
further by including those additional effects on the beam
dynamics and apply to the design of the halo and beam loss
diagnostics.
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