Author: Repond, J.
Paper Title Page
TUP2WA03 Studies of Capture and Flat-Bottom Losses in the SPS 180
 
  • M. Schwarz, H. Bartosik, E. Chapochnikova, A. Lasheen, J. Repond, H. Timko
    CERN, Geneva, Switzerland
 
  One of the strong limitations for reaching higher beam intensities in the SPS, the injector of the LHC at CERN, are particle losses at flat bottom that increase with beam intensity. In this paper, different sources of these losses are investigated for two available SPS optics, using both measurements and simulations. Part of the losses originate from the PS-to-SPS bunch-to-bucket transfer, because the PS bunches are rotated in longitudinal phase space before injection and do not completely fit into the SPS RF bucket. The injection losses due to different injected bunch distributions were analyzed. Furthermore, at high intensities the transient beam loading in the SPS has a strong impact, which is (partially) compensated by the LLRF system. The effect of the present and future upgraded one-turn delay feedback system and phase loop on flat-bottom losses was studied using the longitudinal tracking code BLonD. Finally, the total particle losses are also affected by limitations in the SPS momentum aperture, visible for higher RF capture voltages in optics with lower transition energy and higher dispersion.  
slides icon Slides TUP2WA03 [8.038 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUP2WA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP2WA05 Effect of the Extraction Kickers on the Beam Stability in the CERN SPS 189
 
  • A. Farricker, M.S. Beck, J. Repond, C. Vollinger
    CERN, Geneva, Switzerland
 
  Longitudinal beam instability in the CERN SPS is a major limitation in the ability to achieve the bunch intensities required for the goals of the High-Luminosity LHC project (HL-LHC). One of the major drivers in limiting the intensity of the machine is the broadband contribution to the beam-coupling impedance due to the kicker magnets. The extraction kickers (MKE) discussed in this paper are known to give a significant contribution to the overall longitudinal beam-coupling impedance. We present the results of bench measurements of the MKE's impedance to determine the accuracy of electromagnetic simulation models from which the impedance modelused for beam dynamics simulationsis constructed. In addition, we discuss the feasibility and implementation of beam measurements that can indicate the contribution of the MKE magnets to the longitudinal beam-coupling impedance of the SPS.  
slides icon Slides TUP2WA05 [2.698 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUP2WA05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)