Author: Miyamoto, R.
Paper Title Page
TUP2WE02 The Beam Conditions on the Target and its Operational Impacts on Beam Intercepting Devices at European Spallation Source 110
 
  • Y. Lee, R. Miyamoto, T.J. Shea
    ESS, Lund, Sweden
  • H.D. Thomsen
    ISA, Aarhus, Denmark
 
  A large flux of spallation neutrons will be produced at the European Spallation Source (ESS) by impinging high power proton beam on the tungsten target. Until the 5 MW proton beam is stopped by the spallation target, it travels through a number of beam intercepting devices (BIDs), which include the proton beam window, a multi-wire beam profile monitor, an aperture monitor, the beam entrance window, spallation material and the target shroud. The beam-induced thermo-mechanical loads and the damage dose rate in the BIDs are largely determined by the beam energy and the beam current density. At ESS, the proton beam energy will be commissioned step-wisely, from 570 MeV towards 2 GeV. The beam current density on the BIDs in the target station is equally painted by raster beam optics. The ESS Linac and its beam optics will create rectangular beam profiles on the target with varying beam intensities. In this paper, we study the impacts of different plausible beam intensities and beam energies on the thermo-mechanical loads and radiation damage rates in the BIDs at the ESS target station.  
slides icon Slides TUP2WE02 [9.826 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUP2WE02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA1WD01 ESS Commissioning Plans 127
 
  • N. Milas, R. De Prisco, M. Eshraqi, Y. Levinsen, R. Miyamoto, M. Muñoz, D.C. Plostinar
    ESS, Lund, Sweden
 
  The ESS linac is currently under construction in Lund, Sweden, and once completed it will deliver an unprecedented 5 MW of average power. The ion source and LEBT commissioning starts in 2018 and will continue with the RFQ, MEBT and the first DTL tank next year and up to the end of the fourth DTL tank in 2020. This paper will summarize the commissioning plans for the normal conducting linac with focus on the ion source and LEBT and application development for both commissioning and operation.  
slides icon Slides TUA1WD01 [1.552 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUA1WD01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP1WB01 Beam Dynamics of the ESS Linac 206
 
  • Y. Levinsen, R. De Prisco, M. Eshraqi, N. Milas, R. Miyamoto, D.C. Plostinar, A. Ponton
    ESS, Lund, Sweden
 
  The ESS linac will deliver an unprecedented 5 MW of average beam power when completed. Beyond the 90 MeV normal conducting front-end, the acceleration is performed using SC structures up to the design energy of 2 GeV. As the ESS will send the beam to a fixed tungsten target, the emittance is not as important a factor as in injectors. However, the losses have to be studied in detail, including not only the average operational loss required to be of less than 1 W/m, but also the accidental losses, losses due to failure and other potentially damaging losses. The commissioning of the ion source and LEBT starts this year and will continue with the RFQ next year. In this contribution we will discuss the beam dynamics aspects and challenges of the ESS linac.  
slides icon Slides WEP1WB01 [2.084 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP1WB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)