Author: Kazarinov, N.Yu.
Paper Title Page
WEP2PO027 Simulation of the Axial Injection Beam Line of the Reconstructed U200 Cyclotron of FLNR JINR 319
 
  • N.Yu. Kazarinov, J. Franko, G.G. Gulbekyan, I.A. Ivanenko, I.V. Kalagin
    JINR, Dubna, Moscow Region, Russia
 
  Flerov Laboratory of Nuclear Reaction of Joint Institute for Nuclear Research begin the works under reconstruction of the cyclotron U200. The reconstructed cyclotron is intended for acceleration of heavy ions with mass-to-charge ratio A/Z within interval from 5 to 8 up to the fixed energies 3.5 and 5.3 MeV per unit mass. The intensity of the accelerated ions will be about 3 pmcA for lighter ions (A< 40) and about 0.3 pmcA for heavier ions (A<132). The cyclotron will be used in the microchip testing, production of the track pore membranes and for applied physics. The injection into cyclotron will be realized from the external superconducting ECR ion source. The simulation of the axial injection system of the cyclotron is presented in this report.  
poster icon Poster WEP2PO027 [0.679 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PO028 Conceptual Design of FLNR JINR Radiation Facility Based on DC130 Cyclotron 324
 
  • N.Yu. Kazarinov, P.Yu. Apel, V. Bashevoy, V. Bekhterev, S.L. Bogomolov, O.N. Borisov, J. Franko, G.G. Gulbekyan, I.A. Ivanenko, I.V. Kalagin, V.I. Mironov, S.V. Mitrofanov, V.A. Semin, V.A. Skuratov, A. Tikhomirov
    JINR, Dubna, Moscow Region, Russia
 
  Flerov Laboratory of Nuclear Reaction of Joint Institute for Nuclear Research begins the works under the conceptual design of radiation facility based on the DC130 cyclotron. The facility is intended for SEE testing of microchips, for production of track membranes and for solving of applied physics problems. The DC130 cyclotron will accelerate heavy ions with mass-to-charge ratio A/Z of the range from 5 to 8 up to fixed energies 2 and 4.5 MeV per unit mass. The intensity of the accelerated ions will be about 1 pmcA for lighter ions (A<50) and about 0.1 pmcA for heavier ions (A>50). The injection into cyclotron will be realized from the external DECRIS-SC superconducting ECR ion source. The main magnet and acceleration system of DC130 is based on the U200 cyclotron ones that now is under reconstruction. The conceptual design parameters of various systems of the cyclotron and the set of experimental beam lines are presented in this report.  
poster icon Poster WEP2PO028 [1.955 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP2WC03 The Choosing of Magnetic Structure of Isochronous Cyclotron DC-130 for Applied Research 446
 
  • I.A. Ivanenko, J. Franko, G.G. Gulbekyan, I.V. Kalagin, N.Yu. Kazarinov
    JINR, Dubna, Moscow Region, Russia
 
  At the present time, the activities on creation of the new multipurpose isochronous cyclotron DC130 are carried out at the FLNR, JINR. The cyclotron DC130 is intended for microchip testing, production of track pore membranes and for applied physics. The cyclotron will accelerate the heavy ions with mass-to-charge ratio A/Z from 5 to 8 up to the fixed energies 2 and 4.5 MeV per nucleon. The main magnet and acceleration system of DC130 is based on the U200 cyclotron that now is under reconstruction. At the present paper the method of choosing of main magnet parameters of cyclotron is described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-THP2WC03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)