HPSim – Advanced Online Modeling for Proton Linacs

by Lawrence Rybarcyk

Accelerators and Electrodynamics Group, Accelerator Operations and Technology Division

HB2016 Workshop Malmö, Sweden July 3-8, 2016

Operated by Los Alamos National Security, LLC for NNSA

Outline

- Introduction & Motivation
- HPSim Features, Structure and Performance
- Benefits and Applications

Slide 2

Introduction

- High-power linacs, e.g. LANSCE, are designed for low beam-loss operation using multiparticle codes
- However, during tune-up, linac operations typically rely on simple envelope and single-particle models, which can only provide limited information
- Multi-particle tools offer advantages for machine operations but are typically tedious to use and limited by available computer resources
- HPSim was developed to bring multi-particle simulation capability to the control room and aid in the setup, monitoring, optimization, etc. of an operating linac

Operated by Los Alamos National Security, LLC for NNSA

LANSCE Facility Overview – Complex, Multi-beam Operations

HPSim Created to Fill a Need

- LANSCE injectors produce only partially bunched beams that result in longitudinal tails and beam spill along linac
- Physics-based tune-up employs envelope and singleparticle tools, necessary but insufficient
- Empirical tuning required to achieve low beam-loss, stable, high-power operation
 - Other, similar facilities also follow the same approach (HB2010 WG-D summary)
- A fast, more accurate multi-particle beam dynamics simulation tool in the control room could improve this situation!

What is HPSim?

- High-Performance Simulator for proton linacs
 - PARMILA physics model (well benchmarked)
 - Multi-particle, nonlinear space charge, etc. (more realism)
 - GPU-based (accelerated, low-cost workstation platform)
 - Online/Offline modes (direct connection to linac control system)

HPSim – Physics Model

- PARMILA provides the basis for the physics in HPSim
 - <u>Phase And Radial Motion in Ion Linear Accelerators</u>: a design and simulation code from Los Alamos Accelerator Code Group
 - Has been used for designing/simulating LANSCE, SNS and other linacs
 - Well tested and benchmarked
 - Multi-particle, z-code (transfer map)
 - Faster than t-code, e.g. PARMELA, more accurate than envelope
 - RF gap transformation (drift kick at the midplane drift) with transit-time factors, TTF(k, r)
 - Non-linear 2D (r-z) particlein-cell (PIC) space-charge algorithm SCHEFF

SCHEFF 2D ring-of-charge r-z mesh

Departures from PARMILA

- Simulation only requires layout generated by other codes e.g. PARMILA & Superfish
- Tracks particles absolute phase, not relative to ref. part.
 Enables easier tracking when modules are enabled/disabled
- TTF function of β for tracking off-energy particles
- Space-charge focuses on particles in rf bucket
 - Exclude off-energy particles
- Space-charge algorithm includes scaling feature wrt. beam size and energy
 - Reuse previously calculated field table to increase code performance while maintaining accuracy

Features Presently Supported in HPSim

- Transport Devices
 - Buncher: single-gap
 - Circular aperture
 - Dipole magnet
 - Drift
 - Quadrupole magnet
 - Steerer (impulse)
 - Rectangular aperture
 - Rotation
 - Space-charge compensation

- Linac Structures
 - Drift Tube (DTL)
 - Coupled Cavity (CCL)
- Input Distributions
 - DC waterbag
 - 6D waterbag
 - Text file of 6D coordinates
- Space Charge
 SCHEFF 2D (R-Z)
- EPICS channel

EST. 1943

Space-Charge Compensation Reflects Beam Neutralization in LANSCE H⁻ 750 keV LEBT

Powered by GPU Technology

- Graphics Processing Unit (GPU) enables highperformance and 24/7 availability at low-cost
- Once, just for gamers, now powers some of the world's fastest supercomputers, e.g. ORNL Titan (18,688 GPUs)
- NVIDIA K20c GPU
 - 2496 CUDA Cores
 - 5 GB RAM
 - Peak double/single precision performance: 1.17/3.52 Tflops
 - Street price: ~\$3K US
 - (faster GPU's now available)

Operated by Los Alamos National Security, LLC for NNSA

Designed for Speed and Ease of Use

- Speed comes from number-crunching simulation kernels written in NVIDIA CUDA C and C++ that run on GPU
- Python/C API's hides complex code from user

- Ease-of-use comes through high-level Python interface to HPSim
- Python also provides rich numerical and visualization libraries

X. Pang et al., Comp. Phys. Comm. 185, 744, 2014.

Slide 12

Code Structure Splits Workload Between CPU and GPU

- EPICS data acquired and stored in serverless
 SQLite database (online)
- Model is updated with corresponding physics values and written to 'pinned' memory for GPU

- Beam created/stored on GPU
- Simulation from point A to point B performed on GPU
- Graphic outputs (online mode, GPU) or text data (offline mode, CPU) for post-processing

Machine Model Resides in Database

- Serverless, flat-file like for minimal overhead and data consistency
- Description of linac layout and physics design
 - Rf cavity dimensions, design field strengths, etc.
- Conversion rules required to transform control parameter values to calibrated physics model quantities
 - E.g. DTL module amplitude set point to cavity field, E_0 (MV/m)
- Triggers that force recalculation of model quantities when control parameters are updated
 - E.g. RF Off command updates cavity fields to zero

Outstanding Code Performance!

- Speedups (NVIDIA GTX 580 vs. Intel Xeon E5520)
 - GTX580: CUDA cores: 580, 1.5 GB
 - Beam transport without space charge: **up to 160**
 - Space charge routine only: **up to 45**
- LANSCE simulation on NVIDIA K20c
 - H- beam from 0.75 to 800 MeV
 - 64K macroparticles
 - Size of problem: ~800 m, over 5100 RF gaps, 400 quads & 6000 space-charge kicks
 - Total time: 5.5 sec!

Slide 15

Accurate Predictions Require Model Calibration

- Transformation of control set points to physics quantities
- Calibration functions/transformations stored in database
 - Magnets: mapping measurements, e.g. G vs. I
 - Bunchers & Linac: beam-based measurements, e.g. cavity phase offset and amplitude scale factor for each RF module

Operated by Los Alamos National Security, LLC for NNSA

Numerous Benefits and Applications

- Faster and more realistic linac beam simulations in the control room opens up new possibilities
 - Improved Tune-up and Monitoring
 - Virtual Beam Diagnostic
 - Optimization
 - Virtual Accelerator
 - ...

HPSim for Machine Tuning and Monitoring

- HPSim can function as a virtual beam diagnostic
 - Providing beam information where diagnostics do not exist or are incompatible with operation
- New information for tuning
 - Direct beam information, not just indirect spill measurements
- Track the impact of parameter changes on beam performance

Continuous Online Monitoring – A New Way to View Linac Operations

HPSim for Optimizing Machine Set Points

- HPSim + optimization routines can improve operating set points based upon user defined objectives
- Benefits:
 - Avoids completely empirical approach in high-dimensional parameter space
 - Optimize on beam quantities, e.g. emittance, phase spread, etc., not just losses

HPSim + Multi-Objective Particle Swarm Optimizer (MOPSO) - Fast and Effective

- Globally optimized compromise of objectives in multi-dimensional space
- Transverse beam match: LEBT to DTL
 - 2 Objectives: Max. trans., min. mismatch
 - Parameter: 4 quad gradients
 - Time: few secs
- DTL Longitudinal Tune
 - 3 Objectives: Min. long. emit., min. lost beam power, min. output beam phase width
 - Parameters: 11 RF (phs. & amp.)
 - Time: 16 min.

X. Pang, L. Rybarcyk, NIM-A, 741, 124, 2014 Slide 21

HPSim as a Virtual Accelerator

- Virtual Accelerator provides user with EPICS-based control of realistic physics model of the linac
- Benefits:
 - Test bed for new ideas/ algorithms
 - Less risky and costly than experiments on real accelerator
 - Available 24/7
- Example:
 - Model-Independent Dynamic Feedback Technique for Accelerator Tuning

Operated by Los Alamos National Security, LLC for NNSA

Adaptive tuning of LANSCE LEBT devices maintains DTL output current under time-varying input beam and buncher phases while performance deteriorates under static set points

A. Scheinker et al. PRSTAB 16, 102803, 2013 Slide 22

Status and Future Plans

- Testing and development to continue
- Further integration into LANSCE control room during startup this year
- Finally, release to open source community planned in the future

Slide 23

Summary

- HPSim is a fast, accurate multi-particle beam dynamics tools for use on operating ion linacs
- It's architecture along with GPU technology make it an effective and inexpensive way to bring this type of beam dynamics simulation tool to a control room setting
- The Python interface gives the user an easy and flexible way to run the code and enables creativity and exploration of new ideas
- For an operating linac, it can serve as a virtual beam diagnostic, aid in optimization of control settings or as a virtual accelerator and test bed

Thank you!

I would like to acknowledge my colleague, Dr. Xiaoying Pang, whose work was instrumental in the development of this code!

NNS

